特征选择是特征工程中的重要一环,其主要目的是从所有特征中选出相关特征 (relevant feature),或者说在不引起重要信息丢失的前提下去除掉无关特征 (irrelevant feature) 和冗余特征 (redundant feature)。进行特征选择的好处主要有以下几种 ...
转载:https: www.cnblogs.com jasonfreak p .html 特征选择主要从两个方面入手: 特征是否发散:特征发散说明特征的方差大,能够根据取值的差异化度量目标信息. 特征与目标相关性:优先选取与目标高度相关性的. 对于特征选择,有时候我们需要考虑分类变量和连续变量的不同. .过滤法:按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数选择特征 方差选择 ...
2018-09-22 10:16 0 8407 推荐指数:
特征选择是特征工程中的重要一环,其主要目的是从所有特征中选出相关特征 (relevant feature),或者说在不引起重要信息丢失的前提下去除掉无关特征 (irrelevant feature) 和冗余特征 (redundant feature)。进行特征选择的好处主要有以下几种 ...
使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。 方差过滤可以使用在巨大的稀疏矩阵中,稀疏矩阵中可以考虑将方差的过滤阈值设置为0,这样就会 ...
:卡方,F检验,互信息 3.1.2.1 卡方过滤 卡方过滤是专门针对离散型标签(即分类问题)的相关 ...
原创博文,转载请注明出处! 包裹式特征选择法的特征选择过程与学习器相关,使用学习器的性能作为特征选择的评价准则,选择最有利于学习器性能的特征子集。常用的包裹式特征选择法有递归特征消除法RFE。 # 递归特征消除法 递归特征消除法RFE 递归特征消除法的英文全名 ...
# 过滤式特征选择法的原理 使用发散性或相关性指标对各个特征进行评分,选择分数大于阈值的特征或者选择前K个分数最大的特征。具体来说,计算每个特征的发散性,移除发散性小于阈值的特征/选择前k个分数最大的特征;计算每个特征与标签的相关性,移除相关性小于阈值的特征/选择前k个分数 ...
特征选择)。卡方检验和信息增益是feature weight algorithm常用且效果较优的算法。 ...
原创博文,转载请注明出处! 嵌入式特征选择法使用机器学习模型进行特征选择。特征选择过程与学习器相关,特征选择过程与学习器训练过程融合,在学习器训练过程中自动进行特征选择。 通过L1正则化来选择特征 sklearn在feature_selection模块中集 ...
3.1 Filter过滤法过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法。它是根据各种统计检验中的分数以及相关性的各项指标来选择特征。 3.1.1 方差过滤3.1.1.1 VarianceThreshold 这是通过特征本身的方差来筛选特征的类。比如一个特征本身的方差很小 ...