不平衡数据分类算法介绍与比较 作者:a358463121 介绍 在数据挖掘中,经常会存在不平衡数据的分类问题,比如在异常监控预测中,由于异常就大多数情况下都不会出现,因此想要达到良好的识别效果普通的分类算法还远远不够,这里介绍几种处理不平衡数据的常用方法及对比。 符号表 ...
. 数据不平衡的数据处理 . 数据不平衡的分类器评价指标 . 分类器评价指标 . 混淆矩阵 在数据不平衡的分类任务中,我们不在使用准确率当作模型性能度量的指标,而是使用混淆矩阵 精准率 召回率 F 值当作模型的性能度量指标。 TP True Positive :真实是正例,预测也为正例的情况 预测对的部分 FP False Positive :真实是反例,预测为正例的情况 预测错的部分 FN F ...
2018-09-21 20:10 0 4761 推荐指数:
不平衡数据分类算法介绍与比较 作者:a358463121 介绍 在数据挖掘中,经常会存在不平衡数据的分类问题,比如在异常监控预测中,由于异常就大多数情况下都不会出现,因此想要达到良好的识别效果普通的分类算法还远远不够,这里介绍几种处理不平衡数据的常用方法及对比。 符号表 ...
数据不平衡 1.什么是数据不平衡 一般都是假设数据分布是均匀的,每种样本的个数差不多,但是现实情况下我们取到的数据并不是这样的,如果直接将分布不均的数据直接应用于算法,大多情况下都无法取得理想的结果。 这里着重考虑二分类,因为解决了二分类种的数据不平衡问题后,推而广之酒能得到多分类情况下 ...
下的样本数远大于另一些类别下的样本数目。即类别不平衡,为了使得学习达到更好的效果,因此需要解决该类别不 ...
比作权重,此特征权重来源于数据本身,能够较好的适应数据集的改变; 2.采样 采样方法是通过对训练集进 ...
常用的分类算法一般假设不同类的比例是均衡的,现实生活中经常遇到不平衡的数据集,比如广告点击预测(点击转化率一般都很小)、商品推荐(推荐的商品被购买的比例很低)、信用卡欺诈检测等等。 对于不平衡数据集,一般的分类算法都倾向于将样本划分到多数类,体现在整体的准确率很高。 但对于极不均衡的分类问题 ...
1.决策树和LR会使结果偏向与训练集多的类别,训练集少的类别会当成噪音或者被忽视 2.没有很好的衡量不平衡问题的评价方法。 Normal 0 7.8 磅 0 2 false false false ...
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文来自云+社区翻译社,作者ArrayZoneYour 在分类问题当中,数据不平衡是指样本中某一类的样本数远大于其他的类别样本数。相比于多分类问题,样本不平衡的问题在二分类问题中的出现频率更高。举例来说,在银行或者金融的数据 ...