上文已经介绍了基于词典的中文分词,现在让我们来看一下基于统计的中文分词。 统计分词: 统计分词的主要思想是把每个词看做是由字组成的,如果相连的字在不同文本中出现的次数越多,就证明这段相连的字很有可能就是一个词。 统计分词一般做如下两步操作: 1.建立统计语言模型 ...
中文分词概述 词是最小的能够独立活动的有意义的语言成分,一般分词是自然语言处理的第一项核心技术。英文中每个句子都将词用空格或标点符号分隔开来,而在中文中很难对词的边界进行界定,难以将词划分出来。在汉语中,虽然是以字为最小单位,但是一篇文章的语义表达却仍然是以词来划分的。因此处理中文文本时,需要进行分词处理,将句子转为词的表示,这就是中文分词。 中文分词的三个难题: 分词规则,消除歧义和未登录词识别 ...
2018-09-21 16:59 3 9110 推荐指数:
上文已经介绍了基于词典的中文分词,现在让我们来看一下基于统计的中文分词。 统计分词: 统计分词的主要思想是把每个词看做是由字组成的,如果相连的字在不同文本中出现的次数越多,就证明这段相连的字很有可能就是一个词。 统计分词一般做如下两步操作: 1.建立统计语言模型 ...
) # 双向最大匹配法 首先看两种方法结果的分词数,分词数越少越好;分词数相同的情况下,看单个词的数量,越少越好 ...
说明 中文分词是很多文本分析的基础。最近一个项目,输入一个地址,需要识别出地址中包含的省市区街道等单词。与以往的分词技术不同。jieba/hanlp等常用的分词技术,除了基于词典,还有基于隐马尔科夫/条件随机场等机器学习技术对未登录词的分词,有一定的概率性。而我们所使用的地址识别,要求 ...
笔者想说:觉得英文与中文分词有很大的区别,毕竟中文的表达方式跟英语有很大区别,而且语言组合形式丰富,如果把国外的内容强行搬过来用,不一样是最好的。所以这边看到有几家大牛都在中文分词以及NLP上越走越远。哈工大以及北大的张华平教授(NLPIR)的研究成果非常棒! 但是商业应用的过程中存在 ...
之前在其他博客文章有提到如何对英文进行分词,也说后续会增加解释我们中文是如何分词的,我们都知道英文或者其他国家或者地区一些语言文字是词与词之间有空格(分隔符),这样子分词处理起来其实是要相对容易很多,但是像中文处理起来就没有那么容易,因为中文字与字之间,词与词之间都是紧密连接在一起的,所以第一件 ...
本文将对三种中文分词工具进行使用尝试,这三种工具分别为哈工大的LTP,结巴分词以及北大的pkuseg。 首先我们先准备好环境,即需要安装三个模块:pyltp, jieba, pkuseg以及LTP的分词模型文件cws.model。在用户字典中添加以下5个词语: 经 少安 ...
算法描述: S1为带切分字符串,S2为空,MaxLen为词典中的最大词长 判断S1是否为空,若是则输出S2 从S1右边开始,取出待处理字符串str(其中str的长度小于MaxLen) 查看str是否在词典中,若是则转5,若否则转6 S2+=str+”/”,S1-=str,转 ...
在使用jieba分词模块进行分词的处理之后,由于项目的需要,要写一个java的分词模块。浏览了jieba的GitHub网页之后发现:jieba的java部分已经是好久没有更新过了,并且jieba的java版本功能非常不完善(甚至没有按照词性分词的功能)。不过无可厚非就是了,毕竟jieba的口号是做 ...