目录 简述 K-means聚类 密度聚类 层次聚类 一、简述 聚类算法是常见的无监督学习(无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类)。 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型。而在聚类 ...
目录 简述 K-means聚类 密度聚类 层次聚类 一、简述 聚类算法是常见的无监督学习(无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类)。 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型。而在聚类 ...
K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去 ...
算法简介 K-Means是一种常用的聚类算法。聚类在机器学习分类中属于无监督学习,在数据集没有标注的情况下,便于对数据进行分群。而K-Means中的K即指将数据集分成K个子集合。 K-Means演示 从以下的动画、视频和计算过程可以较为直观了解算法的计算过程。 动画展示 视频展示 ...
参考了Andrew Ng的Machine Learning Assignment(https://github.com/rieder91/MachineLearning/blob/mas ...
) K-Means ++ 算法 k-means++算法选择初始seeds的基本思想就是:初始的聚类中 ...
本学习笔记参考自吴恩达老师机器学习公开课 聚类算法是一种无监督学习算法。k均值算法是其中应用最为广泛的一种,算法接受一个未标记的数据集,然后将数据聚类成不同的组。K均值是一个迭代算法,假设我们想要将数据聚类成K个组,其方法为: 随机选择K个随机的点(称为聚类中心 ...
聚类与分类的区别 分类 类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。属于监督学习。 聚类 事先不知道数据会分为几类,通过聚类分析将数据聚合 ...
From: http://blog.csdn.net/cyxlzzs/article/details/7416491 ...