美团店铺评价语言处理以及分类(LogisticRegression) 第一篇 数据清洗与分析部分 第二篇 可视化部分, 第三篇 朴素贝叶斯文本分类 本文是该系列的第四篇 主要讨论逻辑回归分类算法的参数以及优化 主要用到的包有jieba,sklearn,pandas,本篇博文 ...
第一篇 数据清洗与分析部分 第二篇 可视化部分, 第三篇 朴素贝叶斯文本分类 支持向量机分类 支持向量机 网格搜索 临近法 决策树 随机森林 bagging方法 .dataframe tbody tr th:only of type vertical align: middle comment star 还行吧,建议不要排队那个烤鸭和羊肉串,因为烤肉时间本来就不够,排那个要半小时,然后再回来吃烤 ...
2018-09-20 00:04 0 977 推荐指数:
美团店铺评价语言处理以及分类(LogisticRegression) 第一篇 数据清洗与分析部分 第二篇 可视化部分, 第三篇 朴素贝叶斯文本分类 本文是该系列的第四篇 主要讨论逻辑回归分类算法的参数以及优化 主要用到的包有jieba,sklearn,pandas,本篇博文 ...
这里仅介绍分类决策树。 决策树:特征作为决策的判断依据,整个模型形如树形结构,因此,称之为决策树 对于分类决策树,他们可以认为是一组if-then规则的集合。决策树的每一个内部节点有特征组成,叶子节点代表了分类的结果。父节点和子节点之间是由有向边连接,表示了决策 ...
一、决策树 决策树(decision tree)是一种基本的分类与回归方法,本篇主要讨论用于分类的决策树。 1.决策树模型 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点(node)和有向边(directed edge)组成。结点有两种类型:内部结点(internal ...
目录 特征选择 信息的度量和作用 信息增益 信息增益的计算 常见决策树使用的算法 sklearn决策树API 泰坦尼克号案例 决策树的优缺点以及改进 集成学习方法-随机森林 学习算法 ...
一、原理: 决策树:能够利用一些决策结点,使数据根据决策属性进行路径选择,达到分类的目的。 一般决策树常用于DFS配合剪枝,被用于处理一些单一算法问题,但也能进行分类 。 也就是通过每一个结点的决策进行分类,那么关于如何设置这些结点的决策方式: 熵:描述一个集合内元素混乱程度的因素。 熵 ...
一.决策树 决策树原理 : 通过对一系列问题进行if/else的推导,最终实现决策. 1.决策树的构建 ############################# 决策树的构建 ####################################### #导入numpy ...
首先,在了解树模型之前,自然想到树模型和线性模型有什么区别呢?其中最重要的是,树形模型是一个一个特征进行处理,之前线性模型是所有特征给予权重相加得到一个新的值。决策树与逻辑回归的分类区别也在于此,逻辑回归是将所有特征变换为概率后,通过大于某一概率阈值的划分为一类,小于某一概率阈值的为另一类 ...