demo代码: # _*_coding:UTF-8_*_ import numpy as np import sys import pandas as pd from pandas impo ...
作者:城东链接:https: www.zhihu.com question answer 来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 目录 特征工程是什么 数据预处理 . 无量纲化 . . 标准化 . . 区间缩放法 . . 标准化与归一化的区别 . 对定量特征二值化 . 对定性特征哑编码 . 缺失值计算 . 数据变换 特征选择 . Filter . . 方差选 ...
2018-09-19 14:26 0 4996 推荐指数:
demo代码: # _*_coding:UTF-8_*_ import numpy as np import sys import pandas as pd from pandas impo ...
官网的一个例子(需要自己给出计算公式、和k值) 参数 1、score_func ...
概述 针对某种数据,通过一定的特征提取手段,或者记录观测到的特征,往往得到的是一组特征,但其中可能存在很多特征与当前要解决的问题并不密切等问题。另一方面,由于特征过多,在处理中会带来计算量大、泛化能力差等问题,即所谓的“维数灾难”。 特征选择便是从给定的特征集合中选出相关特征子集的过程 ...
1、介绍 Max-Relevance and Min-Redundancy,最大相关—最小冗余。最大相关性保证特征和类别的相关性最大;最小冗余性确保特征之间的冗余性最小。它不仅考虑到了特征和标注之间的相关性,还考虑到了特征和特征之间的相关性。度量标准使用的是互信息(Mutual ...
3.2 Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树 ...
一、关于特征选择 主要参考连接为:参考链接,里面有详细的特征选择内容。 介绍 特征选择是特征工程里的一个重要问题,其目标是寻找最优特征子集。特征选择能剔除不相关(irrelevant)或冗余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。另一方 ...
在做文本挖掘,特别是有监督的学习时,常常需要从文本中提取特征,提取出对学习有价值的分类,而不是把所有的词都用上,因此一些词对分类的作用不大,比如“的、是、在、了”等停用词。这里介绍两种常用的特征选择方法: 互信息 一个常用的方法是计算文档中的词项t与文档类别c的互信息MI,MI度量 ...
如何选择特征 根据是否发散及是否相关来选择 方差选择法 先计算各个特征的方差,根据阈值,选择方差大于阈值的特征 方差过滤使用到的是VarianceThreshold类,该类有个参数threshold,该值为最小方差的阈值,然后使用fit_transform进行特征值过滤 相关系数法 ...