深度神经网络模型压缩和加速方法 综合现有的深度模型压缩方法,它们主要分为四类: 1、参数修剪和共享(parameter pruning and sharing) 2、低秩因子分解(low-rank factorization) 3、转移/紧凑卷积滤波器(transferred ...
动机: 目标:想要获得一个实时的模型,且尽可能的准确。 我们有一个大模型性能很好,但是很慢: 我们有个小模型速度很快,但是性能很差: 动机:面临的挑战 由于容量和能力,小模型很难达到一个很好的性能。 精确度和模型压缩之间的差距还是很大 物体检测比分类要困难得多: a 标签的计算更加昂贵 b 类别不均衡 c 多任务同时需要分类和回归 直接应用蒸馏在检测模型上并不能很好的工作。 背景,前人的工作: ...
2018-09-18 15:46 3 4921 推荐指数:
深度神经网络模型压缩和加速方法 综合现有的深度模型压缩方法,它们主要分为四类: 1、参数修剪和共享(parameter pruning and sharing) 2、低秩因子分解(low-rank factorization) 3、转移/紧凑卷积滤波器(transferred ...
现状 知识蒸馏 核心思想 细节补充 知识蒸馏的思想最早是由Hinton大神在15年提出的一个黑科技,Hinton在一些报告中将该技术称之为Dark Knowledge,技术上一般叫做知识蒸馏(Knowledge Distillation),是模型加速中的一种 ...
学生模型以较少的参数学习老师的分布,在老师的知道下获得性能提升,可以作为模型压缩的一种思路,示例代码如下: 模型分析对比,可以看到在有老师知道下的学生模型student_kd在acc和loss的表现上比单纯自己训练的要好的多 ...
介绍一下最近看的一种通用卷积核用于模型压缩的方法,刚刚查了一下,原作者的博客在https://zhuanlan.zhihu.com/p/82710870 有介绍,论文传送门 https://papers.nips.cc/paper ...
模型压缩之蒸馏算法小结 原始文档:https://www.yuque.com/lart/gw5mta/scisva Google Slide: https://docs.google.com/presentation/d/e ...
摘要:本篇文章的重点在于改进信息瓶颈的优化机制,并且围绕着高纬空间中互信息难以估计,以及信息瓶颈优化机制中的权衡难题这两个点进行讲解。 本文分享自华为云社区《【云驻共创】美文赏析:大佬对变分蒸馏的跨模态行人重识别的工作》,作者:启明。 论文讲解:《Farewell to Mutual ...
一、分布式词表示(直接使用低维、稠密、连续的向量表示词)(静态的表示) 1、Word2Vec 训练方法:用中心词预测周围词。 局限性:Word2Vec产生的词向量只有每个单词独立的信息, ...
A Survey of Model Compression and Acceleration for Deep Neural Networks 一、研究背景 在神经网络方 ...