贝叶斯公式的理解 一、总结 一句话总结: 我们把上面例题中的 A 变成样本(sample) x , 把 B 变成参数(parameter) \theta , 我们便得到我们的贝叶斯公式: $$\pi(\theta_i|x) = \frac{f(x|\theta_i)\pi(\theta_i ...
独立同分布随机事件 对于n次独立同分布随机事件实验,我们如何计算随机事件概率 举个例子,我们抛同一枚硬币 次,出现正面 次,反面 次,那抛硬币正面的概率是多少 频率派思想 频率派认为事件A的概率 如例子中抛硬币出现正面的概率 是确定的,只是我们不知道,当进行大量重复实验后,事件A发生的概率大致上等于实验中A发生的频率,这也是大数定律的思想。如下, 表示事件A出现次数的期望 实际应用中,我们难以进行 ...
2018-09-16 15:47 0 8279 推荐指数:
贝叶斯公式的理解 一、总结 一句话总结: 我们把上面例题中的 A 变成样本(sample) x , 把 B 变成参数(parameter) \theta , 我们便得到我们的贝叶斯公式: $$\pi(\theta_i|x) = \frac{f(x|\theta_i)\pi(\theta_i ...
目前在研究Automated Machine Learning,其中有一个子领域是实现网络超参数自动化搜索,而常见的搜索方法有Grid Search、Random Search以及贝叶斯优化搜索。前两者很好理解,这里不会详细介绍。本文将主要解释什么是体统(沉迷延禧攻略2333),不对应该解释 ...
更新时间:2019.10.31 目录 1. 引言 2. 先验概率和后验概率 3. 基于贝叶斯统计的估计思想 4. 线性模型再议 5. 先验信息的确定方法 5.1 无信息先验 5.2 共轭先验 6. 结语 1. ...
贝叶斯公式是怎么来的? 我们还是使用 wikipedia 上的一个例子: 一所学校里面有 60% 的男生,40% 的女生。男生总是穿长裤,女生则一半穿长裤一半穿裙子。有了这些信息之后我们可以容易地计算“随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大”,这个就是前面说的“正向 ...
假设已知先验概率P(ωj),也知道类条件概率密度p(x|ωj),且j=1,2.那么,处于类别ωj,并具有特征值x的模式的联合概率密度可写成两种形式: p(ωj,x) = P(ωj|x)p(x) = p(x|ωj)P(ωj) 整理后得出贝叶斯公式(只有两种类型的情况下) 下面分别介绍一下后 ...
简介 学过概率理论的人都知道条件概率的公式:P(AB)=P(A)P(B|A)=P(B)P(A|B);即事件A和事件B同时发生的概率等于在发生A的条件下B发生的概率乘以A的概率。由条件概率公式推导出贝叶斯公式:P(B|A)=P(A|B)P(B)/P(A);即,已知P(A|B),P(A)和P ...
基本概念 样本空间:{试验所有可能结果}-->一个试验所有可能结果的集合,用 Ω 表示。所以P(Ω) = 1 事件:样本空间的一个子集。用A、B、C表示。 条件概率 其实P(A|B ...
全概率公式和贝叶斯公式 一、总结 一句话总结: 全概率就是表示达到某个目的,有多种方式(或者造成某种结果,有多种原因),问达到目的的概率是多少(造成这种结果的概率是多少) 贝叶斯公式就是当已知结果,问导致这个结果的第i原因的可能性是多少?执果索因! 1、条件概率 意义及意义例子 ...