github地址:https://github.com/taishan1994/tensorflow-bilstm-crf 1、熟悉数据 msra数据集总共有三个文件: train.txt:部分数据 test.txt:部分数据 testright.txt:部分数据 ...
命名实体识别 Named Entity Recognition, NER 是 NLP 的基础任务,指从文本中识别出命名性指称项,为关系抽取等任务做铺垫。狭义上,是识别出人名 地名和组织机构名这三类命名实体 时间 货币名称等构成规律明显的实体类型可以用正则等方式识别 。当然,在特定领域中,会相应地定义领域内的各种实体类型。目前的主流工作,是将 NER当做深度学习任务来做,所以,我们需要大量的 高质量 ...
2018-09-15 14:39 0 10922 推荐指数:
github地址:https://github.com/taishan1994/tensorflow-bilstm-crf 1、熟悉数据 msra数据集总共有三个文件: train.txt:部分数据 test.txt:部分数据 testright.txt:部分数据 ...
命名实体的标注有两种方式:1)BIOES 2)BIO 实体的类别可以自己根据需求改变,通常作为原始数据来说,标注为BIO的方式。自己写了一套标注方法,大家可以参考下 原文:1.txt Inspired by energy-fueled phenomena ...
命名实体识别(Named Entity Recognition,NER)是NLP中一项非常基础的任务。NER是信息提取、问答系统、句法分析、机器翻译等众多NLP任务的重要基础工具。 命名实体识别的准确度,决定了下游任务的效果,是NLP中非常重要的一个基础问题。 作者&编辑 ...
摘要 NER 技术概览 NER 数据资源和流行工具 资源 NER 工具 NER 的性能评估指标 NER 中的深度学习技术 DL 为什么那么有效 模型分层标准 ...
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 8. 命名实体识别 8.1 概述 命名实体 文本中有一些描述实体的词汇。比如人名、地名、组织机构名、股票基金、医学术语等,称为命名实体。具有以下共性 ...
结果: {'ALBUM': [(18, 3)], 'SINGER': [(11, 3)], 'SONG': [(2, 3), (6, 3)], 'TAG': [(23, 3)]} 接 ...
一、什么是命名实体识别 命名实体识别(NER)是指在文本中识别出特殊对象,这些对象的语义类别通常在识别前被预定义好,预定义类别如人、地址、组织等。命名实体识别不仅仅是独立的信息抽取任务,它在许多大型nlp应用系统如信息检索、自动文本摘要、问答系统、机器翻译以及知识建库(知识图谱)中也扮演 ...