梯度下降法(Gradient Descent) 优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。 如下图所示,梯度下降不一定能找到全局最优解,可能寻找到的是局部最优解。(当损失函数是凸函数时 ...
理解 mini batch 梯度下降法 Understanding mini batch gradient descent 使用 batch 梯度下降法时,每次迭代你都需要历遍整个训练集,可以预期每次迭代成本都会下降,所以如果成本函数J是迭代次数的一个函数,它应该会随着每次迭代而减少,如果在某次迭代中增加了,那肯定出了问题,也许你的学习率太大。 使用 mini batch 梯度下降法,如果你作出成 ...
2018-09-14 21:19 0 2695 推荐指数:
梯度下降法(Gradient Descent) 优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。 如下图所示,梯度下降不一定能找到全局最优解,可能寻找到的是局部最优解。(当损失函数是凸函数时 ...
再进行Mini-batch 梯度下降法学习之前,我们首先对梯度下降法进行理解 一、梯度下降法(Gradient Descent) 优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。 首先来看看梯度下降 ...
有样本的Loss再计算一次梯度更新参数的方式效率是很低的。因此就有了随机梯度下降和mini-batch梯度下 ...
一.梯度下降 梯度下降就是最简单的用于神经网络当中用于更新参数的用法,计算loss的公式如下: 有了loss function之后,我们立马通过这个loss求解出梯度,并将梯度用于参数theta的更新,如下所示: 这样做之后,我们只需要遍历所有的样本,就可以得到一个 ...
大规模机器学习: 线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本) 批量梯度下降算法(Batch gradient descent): 每计算一次梯度会遍历全部的训练样本,如果训练样本的比较多时,内存消耗 ...
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练样本涵盖,速度也会较快。但当数据量急剧增大,达到百万甚至更大的数量级时,组成的矩阵将极其庞大 ...
优化函数 损失函数 BGD 我们平时说的梯度现将也叫做最速梯度下降,也叫做批量梯度下降(Batch Gradient Descent)。 对目标(损失)函数求导 沿导数相反方向移动参数 在梯度下降中,对于参数 ...
共轭梯度法关键是要找正交向量寻找方向,去不断逼近解。 其本质是最小二乘解的思想 最小二乘解 其中A系数矩阵是确定的,Ax是永远都取不到向量 b的,取得到那就是不用最小二乘解 我要求AX和b最小的距离,就是要求b在Ax上的投影,向量b-AX一定是要垂直于AX ...