粒子群算法的思想源于对鸟/鱼群捕食行为的研究,模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法。它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局 ...
算法起源 粒子群优化算法 PSO 是一种进化计算技术 evolutionary computation , 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程, ...
2018-09-12 22:16 2 12215 推荐指数:
粒子群算法的思想源于对鸟/鱼群捕食行为的研究,模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法。它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局 ...
1.理论基础 粒子群算法(particle swarm optimization,PSO)是计算智能领域中的一种生物启发式方法,属于群体智能优化算法的一种,常见的群体智能优化算法主要有如下几类: (1)蚁群算法(Ant Colony Optimization,简称ACO)[1992年提出 ...
更多精彩尽在微信公众号【程序猿声】 00 目录 遗传算法定义 生物学术语 问题导入 大体实现 具体细节 代码实现 01 什么是遗传算法? 1.1 遗传算法的科学定义 遗传算法(Genetic Algorithm, GA ...
简介 上次在自话遗传算法中提到后期会写两篇关于粒子群算法和蚁群算法的博文,所以这次给大家带来的是我对粒子群的一些理解,并附带一个相当简单的实例去描述这个算法,我会尽力通俗易懂的把整个算法描述一遍,其实粒子群算法的思想也挺简单的,希望我不要反而写复杂了,下面同样引用百度百科的摘要结束简介 ...
粒子群算法最先从观察鸟的捕食行为出发得到的仿生算法,它的原始算法用于求解无约束的多变量优化问题,如二元函数在给定区域内的极值问题,后来被扩展到求解TSP问题,动态优化问题和多目标优化问题。 粒子群算法的基本思想如下。一只鸟出去捕食,它当然是希望找到食物最多的位置。假设这只 ...
同进化算法(见博客《[Evolutionary Algorithm] 进化算法简介》,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简称NN,神经网络是从信息处理角度对人脑的神经元网络系统进行了模拟的相关算法)一样,群体智能优化算法也属于 ...
粒子群优化算法 1. 背景知识 1995年美国社会心理学家Kennedy和电气工程师Eberhart共同提出粒子群优化算法(Particle Swarm Optimization, PSO)。PSO算法的基本思想利用生物学家Heppner的生物群体模型,模拟鸟类觅食过程。鸟类飞行过程相互 ...
粒子群算法 粒子群算法是在1995年由Eberhart博士和Kennedy博士一起提出的,它源于对鸟群捕食行为的研究。它的基本核心是利用群体中的个体对信息的共享从而使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的最优解。设想这么一个场景:一群鸟进行觅食,而远处有一片玉米 ...