特征提取(机器学习数据预处理) 特征提取与特征选择都是数据降维的技术,不过二者有着本质上的区别;特征选择能够保持数据的原始特征,最终得到的降维数据其实是原数据集的一个子集;而特征提取会通过数据转换或数据映射得到一个新的特征空间,尽管新的特征空间是在原特征基础上得来的,但是凭借人眼观察可能看 ...
本文将以iris数据集为例,梳理数据挖掘和机器学习过程中数据预处理的流程。在前期阶段,已完成了数据采集 数据格式化 数据清洗和采样等阶段。通过特征提取,能得到未经处理的特征,但特征可能会有如下问题: 不属于同一量纲 通常采用无量纲化进行处理 信息冗余 定性特征不能直接使用 通常使用哑编码的方式将定性特征转换为定量特征 存在缺失值 信息利用率低不同的机器学习算法和模型对数据中信息的利用是不同的,之 ...
2018-09-11 14:07 0 2020 推荐指数:
特征提取(机器学习数据预处理) 特征提取与特征选择都是数据降维的技术,不过二者有着本质上的区别;特征选择能够保持数据的原始特征,最终得到的降维数据其实是原数据集的一个子集;而特征提取会通过数据转换或数据映射得到一个新的特征空间,尽管新的特征空间是在原特征基础上得来的,但是凭借人眼观察可能看 ...
来源:https://www.zhihu.com/question/29316149/answer/110159647 目录 1 特征工程是什么?2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 ...
对于数据挖掘,数据准备阶段主要就是进行特征工程。 数据和特征决定了模型预测的上限,而算法只是逼近了这个上限。 好的特征要少而精,这会使模型更简单、更精准。 一、特征构造 1.’常见提取方式 文本数据的特征提取 词袋向量的方式:统计频率 ...
归一化处理 from sklearn.preprocessing import StandardScaler X_scaler = StandardScaler() y_scaler = StandardScaler() X_train = X_scaler.fit_transform ...
数据预处理 数据预处理的过程: 输入数据 -> 模型 -> 输出数据 如下图所示为数据样本矩阵,则一行一样本,一列一特征。机器学习中有一个数据预处理的库,是一个解决机器学习问题的科学计算工具包 sklearn.preprocessing。 年龄 学历 ...
机器学习的数据预处理 数据预处理是在机器学习算法开始训练之前对原始数据进行筛选,填充,去抖,类别处理,降维等操作;有的方法可以防止由于数据的原因导致的算法无法工作,有的方法可以加速机器学习算法的训练,提高算法的精度。 1.缺失数据的处理 1.1查看数据确缺失情况 举个例子说明如何查看数据 ...
在sklearn之数据分析中总结了数据分析常用方法,接下来对数据预处理进行总结 当我们拿到数据集后一般需要进行以下步骤: (1)明确有数据集有多少特征,哪些是连续的,哪些是类别的 (2)检查有没有缺失值,对缺失的特征选择恰当的方式进行弥补,使数据完整 (3)对连续的数值型特征进行 ...
StandardScaler预处理数据 原理: 将所有数据的特征值转换为均值为0,方差为1的状态——> ...