BP神经网络是1968年由Rumelhart和Mcclelland为首的科学家提出的概念,是一种按照误差反向传播算法进行训练的多层前馈神经网络,是目前应用比较广泛的一种神经网络结构。BP网络神经网络由输入层、隐藏层和输出层三部分构成,无论隐藏层是一层还是多层,只要是按照误差反向传播算法构建 ...
Deep Learning with TensorFlow IBM Cognitive Class ML EN Module Autoencoders 使用DBN识别手写体 传统的多层感知机或者神经网络的一个问题: 反向传播可能总是导致局部最小值。 当误差表面 error surface 包含了多个凹槽,当你做梯度下降时,你找到的并不是最深的凹槽。 下面你将会看到DBN是怎么解决这个问题的。 深 ...
2018-06-19 22:02 0 3265 推荐指数:
BP神经网络是1968年由Rumelhart和Mcclelland为首的科学家提出的概念,是一种按照误差反向传播算法进行训练的多层前馈神经网络,是目前应用比较广泛的一种神经网络结构。BP网络神经网络由输入层、隐藏层和输出层三部分构成,无论隐藏层是一层还是多层,只要是按照误差反向传播算法构建 ...
今天主要讲一下深度学习泰斗Geofrey Hinton 2006年发表在Nature上的一篇论文《Reducing the Dimensionality of Data with Neural Networks》。这篇文章也是第一篇深度学习的论文,在之前的话没有很好的方法应用在深度学习网络 ...
DBN运用CD算法逐层进行训练,得到每一层的参数Wi和ci用于初始化DBN,之后再用监督学习算法对参数进行微调。本例中采用softmax分类器(下一篇随笔中)作为监督学习算法。 RBM与上一篇随笔中一致,通过多层RBM将softmax parameter从 (10L, 784L)降低到(10L ...
尝试用 Alexnet 来构建一个网络模型,并使用 mnist 数据查看训练结果。 我们将代码实现分为三个过程,加载数据、定义网络模型、训练数据和评估模型。 实现代码如下: GitHub 代码:https://github.com/weixuqin/tensorflow ...
深度学习(二)--深度信念网络(Deep Belief Network,DBN) 一、受限玻尔兹曼机(Restricted Boltzmann Machine,RBM) 在介绍深度信念网络之前需要先了解一下受限玻尔兹曼机:受限玻尔兹曼机(英语:restricted Boltzmann ...
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。 程序比较复杂,我就分成几个部分来叙述。 首先,下载并加载数据: 定义四个函数,分别用于初始化权值W,初始化偏置项b, 构建卷积层和构建池化层 ...
基本概念部分(一):理解CORS 说道Vue的跨域AJAX,我想先梳理一遍CORS跨域,"跨域资源共享"(Cross-origin resource sharing),它是一个W3C标准。 CORS跨域的特点:它需要服务器的‘配合’。就是说,它的实现是:浏览器(所有浏览器和IE10+)+服务器 ...