【深度学习】CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核 ...
CNN中, X 卷积核到底有什么作用呢 https: www.jianshu.com p ba f c e Question: 从NIN 到Googlenet mrsa net 都是用了这个,为什么呢 发现很多网络使用了 X 卷积核,这能起到什么作用呢 另外我一直觉得, X 卷积核就是对输入的一个比例缩放,因为 X 卷积核只有一个参数,这个核在输入上滑动,就相当于给输入数据乘以一个系数。不知道我理 ...
2018-09-10 09:23 0 1951 推荐指数:
【深度学习】CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核 ...
信道压缩~通~通~减 一、1 X 1的卷积核作用 所谓信道压缩,Network in Network是怎么做到的? 对于如下的二维矩阵,做卷积,相当于直接乘以2,貌似看上去没什么意义: 但是,对于下面这种32通道的数据,如果我用1个1x1x32的卷积核与其做卷积运算,得到 ...
等于卷积核数量! 图示: goolenet为例: resnet为例: 同样也利用了1x1卷 ...
1.改变模型维度 二维的输入数据(如\(6*6\))和\(1*1\)的卷积核 卷积,相当于原输入数据直接做乘法 三维的输入数据(如\(6*6*32\))和\(1*1*32\)的卷积核卷积,相当于卷积核的32个数对原输入数据的32个数加权求和,结果填到最右侧对应方框中 升维 ...
权值共享基本上有两种方法: 在同一特征图和不同通道特征图都使用共享权值,这样的卷积参数是最少的,例如上一层为30*30*40,当使用3*3*120的卷积核进行卷积时,卷积参数为:3*3*120个.(卷积跟mlp有区别也有联系一个神经元是平面排列,一个是线性排列) 第二种只在同一特征图上 ...
转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable ...
你可能会想为什么有人会用1x1卷积,因为它关注的不是一块像素,而是一个像素,图1 图1 我们看看传统的卷积,它基本上是运行在一个小块图像上的小分类器,但仅仅是个线性分类器。图2 图2 如果你在中间加一个1x1卷积,你就用运行在一块像素上的神经网络代替了线性分类器。 在卷积操作中 ...
1*1的卷积核在NIN、Googlenet中被广泛使用,但其到底有什么作用也是一直困扰的问题,这里总结和归纳下在网上查到的自认为很合理的一些答案,包括1)跨通道的特征整合2)特征通道的升维和降维 3)减少卷积核参数(简化模型) 1 - 引入 在我学习吴恩达老师 ...