TextRCNN 文本分类 阅读笔记 论文:recurrent convolutional neural networks for text classification 代码(tensorflow):https://github.com/roomylee ...
文章 Generative and Discriminative Text Classificationwith Recurrent Neural Networks 时间: 机构:Google DeepMind 生成模型:generative 判别模型:discrimination 作者支持生成模型比判别模型具有更加优异的性能,经过生成模型和判别模型的建模给出结论。 判别模型使用LSTM的变体 ...
2018-09-08 17:19 0 2552 推荐指数:
TextRCNN 文本分类 阅读笔记 论文:recurrent convolutional neural networks for text classification 代码(tensorflow):https://github.com/roomylee ...
一、背景 在进行深度学习的时候,需要进行模型的预处理和数据转换,这里记录一下内容和方法,方便以后的使用和查找。根据模型的过程,将会按照数据集的处理、标签转化、文本向量化、模型构建、添加评估内容等几个基础的方面进行介绍。 二、内容介绍 2.1 数据的读取 数据的读取一般是直接使用pandas ...
摘抄:https://zhuanlan.zhihu.com/p/25928551(原文地址) 一.传统文本分类 1)文本预处理 文本预处理过程是在文本中提取关键词表示文本的过程,中文文本处理中主要包括文本分词和去停用词两个阶段。 2)文本表示和特征提取 文本表示: 传统做法常用词袋 ...
文本分类实战 分类任务 算法流程 数据标注 特征抽取 特征选择 分类器 训练 ...
0.数据介绍 2、配置网络 定义网络 定义损失函数 定义优化算法 3、训练网络 4、模型评估 ...
转自:http://blog.csdn.net/csdwb/article/details/7082066 一概述 二特征选择 三分类器 一.概述 文本分类在文本处理中是很重要的一个模块,它的应用也非常广泛,比如:垃圾过滤,新闻分类,词性标注 ...
目的 其实,说白了就是人想知道这个文档是做什么的。首先给每篇文章一个标签、构建文档的特征,然后通过机器学习算法来学习特征和标签之间的映射关系,最后对未知的文本进行标签的预测。 在海量信息的互联网时代,文本分类尤其重要。sklearn作为即可学术研究,也可构建产品原型,甚至发布商用产品的机器学习包 ...
之前做过一些文本挖掘的项目,比如网页分类、微博情感分析、用户评论挖掘,也曾经将libsvm进行包装,写了一个文本分类的开软软件Tmsvm。所以这里将之前做过一些关于文本分类的东西整理总结一下。 1 基础知识 1. 1 样本整理 文本分类属于有监督的学习,所以需要整理样本 ...