转自 某大佬的公众号 为什么要使用滑动平均模型? 通过使用滑动平均我们可以使神经网络模型在测试数据上更健壮,在使用随机梯度下降算法训练神经网络时,通过滑动平均模型可以在一定程度上提高最终模型在测试数据上的表现: 它通过控制衰减率(decay)来控制参数更新前后之间的差距,从而达到减缓参数 ...
BN目的是使得每层训练的输出结果在同一分布下,实验证明不仅可以加速收敛速度,还可以提高准确度 因为如果想要计算所有图像的均值与方差,显然不太现实,所以每次计算每个batch的方差与均值,为了使得每个batch的方差与均值尽可能的接近整体分布方差与均值的估计值,这里采用一种指数移动平均 ...
2018-09-06 17:02 0 737 推荐指数:
转自 某大佬的公众号 为什么要使用滑动平均模型? 通过使用滑动平均我们可以使神经网络模型在测试数据上更健壮,在使用随机梯度下降算法训练神经网络时,通过滑动平均模型可以在一定程度上提高最终模型在测试数据上的表现: 它通过控制衰减率(decay)来控制参数更新前后之间的差距,从而达到减缓参数 ...
tensorflow中有一种让模型在测试数据更健壮的方法———滑动平均模型。 形象地来说,就是数据每一次训练出得到的模型都受到之前模型的影响,同时也影响着后面训练出的模型,并且这个影响的大小随着训练次数的增多而减小,并且可以通过decay系数来进行调节。就是这样子让模型的的训练更加稳定的。有这 ...
滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量。 1、滑动平均求解对象初始化 ema = tf.train.ExponentialMovingAverage(decay,num_updates ...
Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析 觉得有用的话,欢迎一起讨论相互学习~ 移动平均法相关知识 原文链接 移动平均法又称滑动平均法、滑动平均模型法(Moving average,MA) 什么是移动平均法 移动 ...
tensorflow使用tf.train.ExponentialMovingAverage实现滑动平均模型,在使用随机梯度下降方法训练神经网络时候,使用这个模型可以增强模型的鲁棒性(robust),可以在一定程度上提高模型在测试数据集上的表现。 滑动平均模型为每个变量维护一个影子变量,其初始值 ...
1. 介绍 滑动平均值滤波可以去除随机噪声。测量中随机噪声的影响,使测量结果不准确,通过多次测量同一数据源,使用多点集合平均的方法得到数据一个比较合理的估计就是滑动平均值滤波。 例如第80采样点的5次平均值滤波: Y[80 ...
花了一天的时间利用常用数字滤波算法对AHRS传感器的数据进行滤波,同时也查找了一些网络资料.网络上的资料基本上都是crtl+c crtl+v 而来的,有很多都有错误,所以说只能简单的借鉴 .这里我选用的滑动平均滤波法和中位值平均滤波法这两种算法.滤波效果如图,黄 色为原始数据,红色为滤波 ...