在多元线性回归中,并不是所用特征越多越好;选择少量、合适的特征既可以避免过拟合,也可以增加模型解释度。这里介绍3种方法来选择特征:最优子集选择、向前或向后逐步选择、交叉验证法。 最优子集选择 这种方法的思想很简单,就是把所有的特征组合都尝试建模一遍,然后选择最优的模型 ...
原文:https: www.toutiao.com i group id .数据探索 常用图表: 查看目标变量的分布。当分布不平衡时,根据评分标准和具体模型的使用不同,可能会严重影响性能。 对Numerical Variable,可以用Box Plot来直观地查看它的分布。 对于坐标类数据,可以用Scatter Plot来查看它们的分布趋势和是否有离群点的存在。 对于分类问题,将数据根据 Labe ...
2018-09-05 16:00 0 817 推荐指数:
在多元线性回归中,并不是所用特征越多越好;选择少量、合适的特征既可以避免过拟合,也可以增加模型解释度。这里介绍3种方法来选择特征:最优子集选择、向前或向后逐步选择、交叉验证法。 最优子集选择 这种方法的思想很简单,就是把所有的特征组合都尝试建模一遍,然后选择最优的模型 ...
sklearn特征选择和分类模型 数据格式: 这里。原始特征的输入文件的格式使用libsvm的格式,即每行是label index1:value1 index2:value2这样的稀疏矩阵的格式。 sklearn中自带 ...
基于模型的特征选择详解 (Embedded & Wrapper) 目录 基于模型的特征选择详解 (Embedded & Wrapper) 1. 线性模型和正则化(Embedded方式) 1.1 L1正则化(Lasso ...
模型选择的标准是尽可能地贴近样本真实的分布。但是在有限的样本下,如果我们有多个可选模型,比如从简单到复杂,从低阶到高阶,参数由少到多。那么我们怎么选择模型呢,是对训练样本的拟合度越好就可以吗?显然不是,因为这样做的话只会让我们最终选择出最复杂,最高阶的模型。而这个模型的问题是过拟合 ...
1 问题 模型选择问题:对于一个学习问题,可以有多种模型选择。比如要拟合一组样本点,可以使用线性回归,也可以用多项式回归。那么使用哪种模型好呢(能够在偏差和方差之间达到平衡最优)? 还有一类参数选择问题:如果我们想使用带权值的回归模型,那么怎么选择权重w公式里的参数 ...
官网的一个例子(需要自己给出计算公式、和k值) 参数 1、score_func ...
概述 针对某种数据,通过一定的特征提取手段,或者记录观测到的特征,往往得到的是一组特征,但其中可能存在很多特征与当前要解决的问题并不密切等问题。另一方面,由于特征过多,在处理中会带来计算量大、泛化能力差等问题,即所谓的“维数灾难”。 特征选择便是从给定的特征集合中选出相关特征子集的过程 ...
1、介绍 Max-Relevance and Min-Redundancy,最大相关—最小冗余。最大相关性保证特征和类别的相关性最大;最小冗余性确保特征之间的冗余性最小。它不仅考虑到了特征和标注之间的相关性,还考虑到了特征和特征之间的相关性。度量标准使用的是互信息(Mutual ...