梯度下降法(Gradient Descent) 优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。 如下图所示,梯度下降不一定能找到全局最优解,可能寻找到的是局部最优解。(当损失函数是凸函数时 ...
优化函数 损失函数 BGD 我们平时说的梯度现将也叫做最速梯度下降,也叫做批量梯度下降 Batch Gradient Descent 。 对目标 损失 函数求导 沿导数相反方向移动参数 在梯度下降中,对于参数的更新,需要计算所有的样本然后求平均,其计算得到的是一个标准梯度 这是一次迭代,我们其实需要做n次迭代直至其收敛 。因而理论上来说一次更新的幅度是比较大的。 SGD 与BGD相比,随机也就是说 ...
2018-08-30 14:27 0 7033 推荐指数:
梯度下降法(Gradient Descent) 优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。 如下图所示,梯度下降不一定能找到全局最优解,可能寻找到的是局部最优解。(当损失函数是凸函数时 ...
一.梯度下降 梯度下降就是最简单的用于神经网络当中用于更新参数的用法,计算loss的公式如下: 有了loss function之后,我们立马通过这个loss求解出梯度,并将梯度用于参数theta的更新,如下所示: 这样做之后,我们只需要遍历所有的样本,就可以得到一个 ...
转自:https://zhuanlan.zhihu.com/p/25765735 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。 下面我们以线性回归算法来对三种梯度下降法进行比较。 一般线性 ...
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。 下面我们以线性回归算法来对三种梯度下降法进行比较。 一般线性回归函数的假设函数为: 对应的损失函数 ...
算法一般用来最小化损失函数:把原始的数据网络喂给网络,网络会进行一定的计算,会求得一个损失函数,代表着网 ...
SGD SGD指stochastic gradient descent,即随机梯度下降。是梯度下降的batch版本。 对于训练数据集,我们首先将其分成n个batch,每个batch包含m个样本。我们每次更新都利用一个batch的数据,而非整个训练集。即: xt+1 ...
https://www.cnblogs.com/lliuye/p/9451903.html 梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent ...
梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降 ...