Pytorch学习系列(一)至(四)均摘自《深度学习框架PyTorch入门与实践》陈云目录:1.程序的主要功能2.文件组织架构3. 关于`__init__.py`4.数据处理5.模型定义6.工具函数7.配置文件8.main.py9.使用1.程序的主要功能: 模型定义 数据加载 ...
本demo从pytorch官方的迁移学习示例修改而来,增加了以下功能: 根据AUC来迭代最优参数 五折交叉验证 输出验证集错误分类图片 输出分类报告并保存AUC结果图片。 ...
2018-08-29 09:26 0 3168 推荐指数:
Pytorch学习系列(一)至(四)均摘自《深度学习框架PyTorch入门与实践》陈云目录:1.程序的主要功能2.文件组织架构3. 关于`__init__.py`4.数据处理5.模型定义6.工具函数7.配置文件8.main.py9.使用1.程序的主要功能: 模型定义 数据加载 ...
二分类 分类问题是机器学习中非常重要的一个课题。现实生活中有很多实际的二分类场景,如对于借贷问题,我们会根据某个人的收入、存款、职业、年龄等因素进行分析,判断是否进行借贷;对于一封邮件,根据邮件内容判断该邮件是否属于垃圾邮件。 图1-1 分类示意图 回归作为分类的缺陷 由于回归 ...
1、单通道输出 在训练时,输出通道为1,网络的输出数值是任意的。标签是单通道的二值图,对输出使用sigmoid,使其数值归一化到[0,1],然后和标签做交叉熵损失。 训练结束后,将输出的outpu ...
分类问题项目流程: 如何端到端的完成一个分类问题的模型 如何通过数据转换提高模型的准确度 如何通过调参提高模型的准确度 如何通过算法集成提高模型的准确度 问题定义 在这个项目中采用声纳、矿山和岩石数据集(http://archive.ics.uci.edu ...
0802-编程实战_猫和狗二分类_深度学习项目架构 目录 一、比赛介绍 二、数据加载 三、模型定义 四、工具函数 五、配置文件 六、main.py 6.1 命令行工具 fire 6.2 main.py的代码组织结构 ...
二分类问题示例: 首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比如这只猫,如果识别这张图片为猫,则输出标签1作为结果;如果识别出不是猫,那么输出标签0作为结果(这也就是著名的cat和non cat问题)。现在我们可以用字母y来表示输出 ...
一、朴素贝叶斯分类器的构建 二、数据集的获取 三、加载数据与数据转换 四、模型拟合、预测与精度 单次训练 多次训练,精确度没有太多的改变,说明朴素贝叶斯分类器只要很少的样本就能学习到大部分 ...
二分类问题可能是应用最广泛的机器学习问题。今天我们将学习根据电影评论的文字内容将其划分为正面或负面。 一、数据集来源 我们使用的是IMDB数据集,它包含来自互联网电影数据库(IMDB)的50000条严重两极分化的评论。为了避免模型过拟合只记住训练数据,我们将数据集分为用于训练的25000条评论 ...