原文:特征工程之离散变量处理

使用sklearn训练模型,只能输入数值型变量。因此需要对数据集中的非数值型离散变量进行处理,非数值型离散变量分为两类:有序型与无序型 一 有序型离散变量处理 什么叫有序型离散变量呢,比如说衣服尺码,M L XL 学历:小学 初中 高中 本科 这些都属于有序型变量。 在上图数据表格中,size及classlabel则为有序型变量,自定义有序型字典表,进行相关映射即可: 二 无序型离散变量处理 衣服 ...

2018-08-28 23:45 0 2279 推荐指数:

查看详情

数据预处理特征工程:哑变量(离散数据)

处理分类型特征:编码与哑变量 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理 文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fifit的时候全部要求输入数组或矩阵,也不能够导 入文字型数据(其实手写 ...

Wed Jun 09 17:46:00 CST 2021 0 987
特征工程之特征处理

    在前面我们分别讨论了特征工程中的特征选择与特征表达,本文我们来讨论特征处理的相关问题。主要包括特征的归一化和标准化,异常特征样本清洗与样本数据不平衡问题的处理。 1. 特征的标准化和归一化      由于标准化和归一化这两个词经常混用,所以本文不再区别标准化和归一化,而通过具体 ...

Sun May 27 04:23:00 CST 2018 102 17762
特征工程之特征处理及选择

基础概念 特征工程是通过对原始数据的处理和加工,将原始数据属性通过处理转换为数据特征的过程,属性是数据本身具有的维度,特征是数据中所呈现出来的某一种重要的特性,通常是通过属性的计算,组合或转换得到的。比如主成分分析就是将大量的数据属性转换为少数几个特征的过程。某种程度而言,好的数据以及特征往往是 ...

Thu Dec 19 06:10:00 CST 2019 0 245
1. 特征工程之特征处理

1. 特征工程之特征处理 2. 特征工程之特征选择 1. 前言 “数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。特征 ...

Thu Nov 15 07:13:00 CST 2018 0 4072
特征工程之特征表达

特征工程之特征选择中,我们讲到了特征选择的一些要点。本篇我们继续讨论特征工程,不过会重点关注于特征表达部分,即如果对某一个特征的具体表现形式做处理。主要包括缺失值处理,特殊的特征处理比如时间和地理位置处理离散特征的连续化和离散处理,连续特征离散处理几个方面。 1. ...

Sun May 20 06:39:00 CST 2018 97 18325
2. 特征工程之特征选择

1. 特征工程之特征处理 2. 特征工程之特征选择 1. 前言 当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。 2. 特征选择的方法 通常来说,从两个方面考虑来选择特征特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征 ...

Fri Nov 16 18:17:00 CST 2018 0 3106
特征工程之特征选择

    特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样是确定的步骤,更多是工程上的经验和权衡。因此没有统一的方法。这里只是对一些常用的方法做一个总结。本文关注于特征选择部分。后面还有两篇会关注于特征表达和特征处理。 1. 特征的来源     在做数据分析的时候,特征 ...

Mon May 14 04:13:00 CST 2018 95 35529
ALINK(二十二):特征工程(一)特征离散化简介(一)

来源:https://blog.csdn.net/weixin_39552874/article/details/112325629 1 特征离散化方法和实现 特征离散化指的是将连续特征划分离散的过程:将原始定量特征的一个区间一一映射到单一的值。 在下文中,我们也将离散化过程表述为 分箱 ...

Fri Jun 18 06:49:00 CST 2021 0 286
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM