05-无约束优化算法 目录 一、无约束最小化问题 二、下降法 三、梯度下降法 四、最速下降法 五、牛顿法 六、牛顿法收敛性分析 凸优化从入门到放弃完整教程地址:https://www.cnblogs.com/nickchen121/p ...
首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f exp x sin x 在 , 上的最大 最小值。 例 边长 m的正方形铁板,四角减去相等正方形,制成方形无盖水槽。怎样减使水槽容积最大。解:列出目标函数 加负号,转化为求最小 min y x x 例 求多元函数最小值minf x exp x x x x x x 下面是MATLAB优化工具箱的主要 ...
2018-08-27 18:45 0 1894 推荐指数:
05-无约束优化算法 目录 一、无约束最小化问题 二、下降法 三、梯度下降法 四、最速下降法 五、牛顿法 六、牛顿法收敛性分析 凸优化从入门到放弃完整教程地址:https://www.cnblogs.com/nickchen121/p ...
梯度的方向与等值面垂直,并且指向函数值提升的方向。 二次收敛是指一个算法用于具有正定二次型函数时,在有限步可达到它的极小点。二次收敛与二阶收敛没有尽然联系,更不是一回事,二次收敛往往具有超线性以上的 ...
11/22/2017 12:40:56 PM 优化问题在很多领域有着重要的应用。为了日后查阅方便,本文列举常见的无约束优化方法的计算公式。 需要说明的是,本文的大部分内容选自图书《算法笔记》。 一、梯度下降法 梯度下降法(Gradient Descent Method)也叫做最速下降法 ...
标准形式: \[min\quad f(X) \] 没有任何的约束条件,在matlab中,fminsearch() 和 fminunc() 可用于求解非线性规划。 fminsearch 是用单纯形法寻优 fminunc 为无约束优化提供了大型优化和中型优化算法 ...
2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\ ...
第三章 无约束优化方法 本文是本人研究生课程《最优化方法》的复习笔记,主要是总结课件和相关博客的主要内容用作复习。 3.1 算法理论基础 1. 无约束优化问题的最优性条件 先是一元函数取得极值的条件,高中就学过的 然后是拓展到多元函数后的理论 这三条和前面一元函数的三条 ...
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法、BFGS 与 L-BFGS 算法。 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较大时,收敛速度尤其慢(几乎不适用); 牛顿法是基于目标函数的二阶导数(Hesse 矩阵 ...
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法。之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下。下面将无约束项优化算法的细节进行描述。为了尊重别人的劳动成果,本文的出处 ...