定义 二项分布:P(X=k)=Cnkpk(1-p)(n-k) 抛硬币,假设硬币不平整,抛出正面的概率为p,那么在n次抛硬币的实验中,出现k次正面的概率 泊松分布: p(X=k)=λke-λ/k! 公共汽车站在单位时间内,来乘车的乘客数为k 的概率。假定 ...
本次函数有 阶乘 计算组合数C n,x 二项概率分布 泊松分布 以下是历史函数 create rand list 创建一个含有指定数量元素的listsum fun 累加len fun 统计个数multiply fun 累乘sum mean fun 算数平均数sum mean rate 算数平均数计算回报median fun 中位数modes fun 众数ext minus fun 极差geom m ...
2018-08-24 09:37 0 1476 推荐指数:
定义 二项分布:P(X=k)=Cnkpk(1-p)(n-k) 抛硬币,假设硬币不平整,抛出正面的概率为p,那么在n次抛硬币的实验中,出现k次正面的概率 泊松分布: p(X=k)=λke-λ/k! 公共汽车站在单位时间内,来乘车的乘客数为k 的概率。假定 ...
定义 二项分布:P(X=k)=Cnkpk(1-p)(n-k) 抛硬币,假设硬币不平整,抛出正面的概率为p,那么在n次抛硬币的实验中,出现k次正面的概率 泊松分布: p(X=k)=λke-λ/k! 公共汽车站在单位时间内,来乘车的乘客数为k 的概率。假定平均到站乘客数为λ 二项分布 ...
(源自:http://www.yelinsky.com/notes/topic/32) 二项分布有两个参数,一个 n 表示试验次数,一个 p 表示一次试验成功概率。现在考虑一列二项分布,其中试验次数 n 无限增加,而 p 是 n 的函数。 1.如果 np 存在有限极限 λ,则这列二项分布就趋于 ...
可能是要放假的原因吧还是因为今天走路摔了下,我觉得我的 胳膊特别疼,打字也特别难受,感觉特别困,看了好长时间的概率题想不明白。 就边写边分析吧。当n很大p很小的时候,二项分布C(n,k)=pk(1-p)n-k 近似于通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。 泊松分布的参数 ...
伯努利实验: 如果无穷随机变量序列 是独立同分布(i.i.d.)的,而且每个随机变量 都服从参数为p的伯努利分布,那么随机变量 就形成参数为p的一系列伯努利试验。同样,如果n个随机变量 独立同分布,并且都服从参数为p的伯努利分布,则随机变量 形成参数为p的n重伯努利试验。 伯努利试验 ...
概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。 离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial ...
开始介绍之前还是老样子先吐槽一下教科书不说人话,喜欢端着,真是耽误了一群数学天才。 伯努利分布 伯努利分布很好理解,常见的例子就是抛硬币,假设硬币正面朝上的概率是 p,所以伯努利分布的概率质量函数(probability mass function,简写作pmf)是: 注意 ...
几何分布、二项分布及泊松分布:坚持离散 作者 白宁超 2015年8月4日13:08:28 摘要:程序员眼中的统计学系列是作者和团队共同学习笔记的整理。首先提到统计学,很多人认为是经济学或者数学的专利,与计算机并没有交集。诚然在传统学科中,其在以上学科发挥作用很大。然而随着科学技术 ...