1. 节衣缩食-位图 在平时的开发中,会有一些bool 型数据需要存取,比如用户的签到记录,签了是1,没签是0,要记录365天。如果使用普通的key/value,每个用户需要记录365个,当用户数上亿的时候,需要的存储空间非常大。 为了解决这个问题,Redis 提供了位图数据结构,每天 ...
首先,HyperLogLog与布隆过滤器都是针对大数据统计存储应用场景下的知名算法。 HyperLogLog是在大数据的情况下关于数据基数的空间复杂度优化实现,布隆过滤器是在大数据情况下关于检索一个元素是否在一个集合中的空间复杂度优化后的实现。 在传统的数据量比较低的应用服务中,我们要实现数据基数和数据是否存在分析的功能,通常是简单的把所有数据存储下来,直接count一下就是基数了,而直接检索一个 ...
2018-08-20 15:31 0 7908 推荐指数:
1. 节衣缩食-位图 在平时的开发中,会有一些bool 型数据需要存取,比如用户的签到记录,签了是1,没签是0,要记录365天。如果使用普通的key/value,每个用户需要记录365个,当用户数上亿的时候,需要的存储空间非常大。 为了解决这个问题,Redis 提供了位图数据结构,每天 ...
一、布隆过滤器是什么 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。 二、布隆过滤器 ...
Bloom Filter布隆过滤器算法背景如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存。很多时候要么是以时间换空间,要么是以空间换时间 ...
布隆过滤器是什么? 布隆过滤器可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率 布隆过滤器基本使用 布隆过滤器 ...
前面讲到bloomfilter的原理及guava实现的bloomfilter的用法,现在看看redis如何实现: 一、bitmaps 我们知道计算机是以二进制位作为底层存储的基础单位,一个字节等于8位。 比如“big”字符串是由三个字符组成的,这三个 ...
【引】基数很大的集合,需要我们比较某个元素是不是存在于这个集合。如果这个查询验证的频率还很高,那么如何设计呢?【方案】1.数据库查询可能我们要考虑的就是如何去分库了,然后再hash到对应的库中进行查找 ...
1、布隆过滤器 内容参考:https://www.jianshu.com/p/2104d11ee0a2 1、数据结构 布隆过滤器是一个BIT数组,本质上是一个数据,所以可以根据下标快速找数据 2、哈希映射 1、布隆需要记录见过的数据,这里的记录需要通过hash函数对数 ...
的解决办法。 1.2.这时布隆过滤器就可以很好的解决这个需求了,可以节约90%以上的空间,缺点就是稍微有那么 ...