1. 激活函数 1.1 各激活函数曲线对比 常用激活函数: 1.2 各激活函数优缺点 sigmoid函数 优点:在于输出映射在(0,1)范围内,单调连续,适合用作输出层,求导容易 缺点:一旦输入落入饱和区,一阶导数接近0,就可能产生 ...
https: blog.csdn.net ChenVast article details 激活函数是模型整个结构中的非线性扭曲力 神经网络的每层都会有一个激活函数 逻辑函数 Sigmoid : 使用范围最广的一类激活函数,具有指数函数形状,它在物理意义上最为接近生物神经元。 其自身的缺陷,最明显的就是饱和性。从函数图可以看到,其两侧导数逐渐趋近于 ,杀死梯度。 函数图像: 正切函数 Tanh : ...
2018-08-16 08:56 0 1139 推荐指数:
1. 激活函数 1.1 各激活函数曲线对比 常用激活函数: 1.2 各激活函数优缺点 sigmoid函数 优点:在于输出映射在(0,1)范围内,单调连续,适合用作输出层,求导容易 缺点:一旦输入落入饱和区,一阶导数接近0,就可能产生 ...
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载。 激活函数的作用 首先,激活函数不是真的要去激活什么。在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好 ...
https://blog.csdn.net/ChenVast/article/details/81382939 神经网络中使用激活函数来加入非线性因素,提高模型的表达能力。 ReLU(Rectified Linear Unit,修正线性单元) 形式如下: ReLU公式近似推导 ...
caffe中activation function的形式,直接决定了其训练速度以及SGD的求解。 在caffe中,不同的activation function对应的sgd的方式是不同的,因此,在配置文件中指定activation layer的type,目前caffe中用的最多的是relu ...
今天看到google brain 关于激活函数在2017年提出了一个新的Swish 激活函数。 叫swish,地址:https://arxiv.org/abs/1710.05941v1 pytorch里是这样的: def relu_fn(x): """ Swish ...
激活函数的用法 激活函数可以通过设置单独的 Activation 层实现,也可以在构造层对象时通过传递 activation 参数实现: 等价于: 你也可以通过传递一个逐元素运算的 Theano/TensorFlow/CNTK 函数来作为激活函数: 预定义激活函数 elu ...
激活函数在深度学习中扮演着非常重要的角色,它给网络赋予了非线性,从而使得神经网络能够拟合任意复杂的函数。 如果没有激活函数,无论多复杂的网络,都等价于单一的线性变换,无法对非线性函数进行拟合。 目前,深度学习中最流行的激活函数为 relu, 但也有些新推出的激活函数,例如 swish、GELU ...