ID3,C4.5算法缺点 ID3决策树可以有多个分支,但是不能处理特征值为连续的情况。 在ID3中,每次根据“最大信息熵增益”选取当前最佳的特征来分割数据,并按照该特征的所有取值来切分, 也就是说如果一个特征有4种取值,数据将被切分4份,一旦按某特征切分后,该特征在之后 ...
决策树系列三 CART原理与代码实现 本文系作者原创,转载请注明出处:https: www.cnblogs.com further further further p .html ID ,C . 算法缺点 ID 决策树可以有多个分支,但是不能处理特征值为连续的情况。 在ID 中,每次根据 最大信息熵增益 选取当前最佳的特征来分割数据,并按照该特征的所有取值来切分, 也就是说如果一个特征有 种取值 ...
2018-08-15 20:04 0 2943 推荐指数:
ID3,C4.5算法缺点 ID3决策树可以有多个分支,但是不能处理特征值为连续的情况。 在ID3中,每次根据“最大信息熵增益”选取当前最佳的特征来分割数据,并按照该特征的所有取值来切分, 也就是说如果一个特征有4种取值,数据将被切分4份,一旦按某特征切分后,该特征在之后 ...
机器学习领域的决策树,但却是第一个有着复杂的统计学和概率论理论保证的决策树(这些话太学术了,引自参考文 ...
CART分类树算法 特征选择 我们知道,在ID3算法中我们使用了信息增益来选择特征,信息增益大的优先选择。在C4.5算法中,采用了信息增益比来选择特征,以减少信息增益容易选择特征值多的特征的问题。但是无论是ID3还是C4.5,都是基于信息论的熵模型的,这里面会涉及大量的对数运算。能不能简化 ...
注:本系列所有博客将持续更新并发布在github和gitee上,您可以通过github、gitee下载本系列所有文章笔记文件。 1 引言 上一篇博客中介绍了ID3和C4.5两种决策树算法,这两种决策树都只能用于分类问题,而本文要说的CART(classification ...
机器学习实战---决策树CART简介及分类树实现 一:对比分类树 CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方。首先,我们要明白,什么是回归树,什么是分类树。 两者的区别在于样本输出: 除了概念 ...
https://blog.csdn.net/weixin_43383558/article/details/84303339?utm_medium=distribute.pc_relevant_t0. ...
机器学习算法及代码实现–决策树 1、决策树 决策树算法的核心在于决策树的构建,每次选择让整体数据香农熵(描述数据的混乱程度)减小最多的特征,使用其特征值对数据进行划分,每次消耗一个特征,不断迭代分类,直到所有特征消耗完(选择剩下数据中出现次数最多的类别作为这堆数据的类别 ...
决策树之系列二—C4.5原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com ...