目的 其实,说白了就是人想知道这个文档是做什么的。首先给每篇文章一个标签、构建文档的特征,然后通过机器学习算法来学习特征和标签之间的映射关系,最后对未知的文本进行标签的预测。 在海量信息的互联网时代,文本分类尤其重要。sklearn作为即可学术研究,也可构建产品原型,甚至发布商用产品的机器学习包 ...
美团店铺评价语言处理以及分类 NLP 第一篇 数据分析部分 第二篇 可视化部分, 本文是该系列第三篇,文本分类 主要用到的包有jieba,sklearn,pandas,本篇博文主要先用的是词袋模型 bag of words ,将文本以数值特征向量的形式来表示 每个文档构建一个特征向量,有很多的 ,出现在特征向量中的值也叫做原始词频,tf term frequency , 得到的矩阵为稀疏矩阵 后续 ...
2018-08-14 22:34 10 4553 推荐指数:
目的 其实,说白了就是人想知道这个文档是做什么的。首先给每篇文章一个标签、构建文档的特征,然后通过机器学习算法来学习特征和标签之间的映射关系,最后对未知的文本进行标签的预测。 在海量信息的互联网时代,文本分类尤其重要。sklearn作为即可学术研究,也可构建产品原型,甚至发布商用产品的机器学习包 ...
基于pandas python的美团某商家的评论销售数据分析 第一篇 数据初步的统计 本文是该可视化系列的第二篇 第三篇 数据中的评论数据用于自然语言处理 导入相关库 数据清洗与简单统计 评论数据,其中包括一下几个字段 是否匿名,均价,评价(以去掉,后续会做 ...
数据初步的分析 本文是该系列的第一篇 数据清洗 数据初步的统计 第二篇 数据可视化 第三篇 数据中的评论数据用于自然语言处理 .dataframe tbody tr th:only-of-type { vertical-align ...
前面博客里面从谣言百科中爬取到了所有类别(10类)的新闻并以文本的形式存储。 现在对这些数据进行分类,上代码: 运行完分类完成! ...
美团店铺评价语言处理以及分类(LogisticRegression) 第一篇 数据清洗与分析部分 第二篇 可视化部分, 第三篇 朴素贝叶斯文本分类 本文是该系列的第四篇 主要讨论逻辑回归分类算法的参数以及优化 主要用到的包有jieba,sklearn,pandas,本篇博文 ...
这是前一段时间在做的事情,有些python库需要python3.5以上,所以mac请先升级 brew安装以下就好,然后Preference(comm+',')->Project: Text-Classification-m...->Project Interpreter-> ...
昨天配置了tensorflow的gpu版本,今天开始简单的使用一下 主要是看了一下tensorflow的tutorial 里面的 IMDB 电影评论二分类这个教程 教程里面主要包括了一下几个内容:下载IMDB数据集,显示数据(将数组转换回评论文本),准备数据,建立模型(隐层设置,优化器和损失 ...
目录 程序简介 程序/数据集下载 代码分析 程序简介 将9类新闻语料切割为训练集和数据集,对新闻进行分词、去停用词、句向量构建后,调用sklearn模块提供的朴素贝叶斯接口建模,对新闻分类,最终实现的接口为 输入:新闻字符串 输出:新闻分类 朴素贝叶 ...