最近在复习数据结构和算法的的内容,栈和队列的思想是比较深刻,借于许多高级语言都有相应的框架实现了栈和队列链表等,所以对于这一类,我们只需要了解其思想,在真正操作时,也会显得比较简单。但是还有一类数据结构是稍显复杂的,在高级语言的程序里面并没有相应的框架,比如树和图。树一般可用节点 ...
图是一种灵活的数据结构,它多用于描述对象之间的关系和连接模型。 关于图的算法:最小生成树 最短路径 旅行商问题以及许多其他算法大都会使用到广度优先搜索和深度优先搜索,因为它们提供了一套系统地访问图数据结构的方法。 带权图,是指图的每条边上带有一个值或权,这些权用一个小的数字标记在边上。很多条件因素都可以作为权值,但通常它表示遍历这条边所产生的代价。 最小生成树简述 我们做一个简单的模型,在一块木板 ...
2018-08-21 08:03 0 5200 推荐指数:
最近在复习数据结构和算法的的内容,栈和队列的思想是比较深刻,借于许多高级语言都有相应的框架实现了栈和队列链表等,所以对于这一类,我们只需要了解其思想,在真正操作时,也会显得比较简单。但是还有一类数据结构是稍显复杂的,在高级语言的程序里面并没有相应的框架,比如树和图。树一般可用节点 ...
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·普里姆独立发现;1959年 ...
一.概述 加权无向图是一种在无向图的基础上,为每条边关联一个权值或是成本的图模型.应用可以有很多:例如在一幅航空图中,边表示导线,权值则表示导线的长度或是成本等. 图的生成树是它的一颗含有其所有顶点的无环连通子图,一幅加权图的最小生成树(MST)是它的一颗权值(树中的所有边的权 ...
正文 所谓最小生成树,就是在一个具有N个顶点的带权连通图G中,如果存在某个子图G',其包含了图G中的所有顶点和一部分边,且不形成回路,并且子图G'的各边权值之和最小,则称G'为图G的最小生成树。 由定义我们可得知最小生成树的三个性质: • 最小生成树不能有回路 ...
最小生成树的形成 (1)一个贪心策略设计如下 每个时刻生长最小生成树的一条边,并在整个策略的实施过程中,遵守下述循环不变式的边集合A: 每一步,选择一条边(u,v)加入集合A,使得A不违反循环不变式。 这样的边使得我们可以“安全地”将之加入到集合A而不会破坏 ...
最近在复习数据结构,所以想起了之前做的一个最小生成树算法。用Kruskal算法实现的,结合堆排序可以复习回顾数据结构。现在写出来与大家分享。 最小生成树算法思想:书上说的是在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v ...
最小生成树 所谓最小生成树,就是一个图的极小连通子图,它包含原图的所有顶点,并且所有边的权值之和尽可能的小。 首先看看第一个例子,有下面这样一个带权图: 它的最小生成树是什么样子呢?下图绿色加粗的边可以把所有顶点连接起来,又保证了边的权值之和最小: 去掉那些多余的边,该图 ...
1.Kruskal算法 Kruskal算法基于贪心,因此它追求的是近似最优解,也就是说由Kruskal得出的生成树并不一定是最优解。 Kruskal算法求最小生成树的关键在于,每次选取图中权值最小(及贪心),并不会构成环的边,直到所有点都被囊括。一般,边的个数=点的个数-1。 如下无向图 ...