最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参数估计方法。 1、最大似然估计(MLE) 在已知试验结果(即是样本)的情况下 ...
机器学习基本理论 详解最大后验概率估计 MAP 的理解 https: blog.csdn.net weixin article details 最大似然估计 Maximum likelihood estimation, 简称MLE 和最大后验概率估计 Maximum a posteriori estimation, 简称MAP 是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它 ...
2018-08-13 13:18 0 2247 推荐指数:
最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参数估计方法。 1、最大似然估计(MLE) 在已知试验结果(即是样本)的情况下 ...
机器学习基础 目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率(MAE ...
1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”。例如,我们知道这个分布是正态分布,但是不知道均值和方差;或者是二项分布,但是不知道均值。 最大似然估计(MLE,Maximum ...
学派 - Bayesian - Maximum A Posteriori (MAP,最大后验估计) ...
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松、忆臻、nebulaf91等人的博客以及李航老师的《统计学习方法》后,豁然开朗,于是在此记下一些心得体会。 “最大似然估计”(Maximum Likelihood Estimation, MLE)与“最大后验概率估计 ...
1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”。例如,我们知道这个分布是正态分布,但是不知道均值和方差;或者是二项分布,但是不知道均值。 最大似然估计(MLE,Maximum Likelihood ...
最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似 ...
参考链接1 参考链接2 一、介绍 极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点。频率派认为,参数是客观存在的,只是未知而矣。因此,频率派最关心极大似然函数,只要参数求出来了,给定自变量X,Y也就固定了,极大似然估计如下所示: D表示训练数据集,是模型参数 相反 ...