原文:正负样本不均衡的解决办法

转载自:http: blog.csdn.net lujiandong article details 这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一。 一 数据不平衡 在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布是均匀的。当我们把 ...

2018-08-12 22:42 0 2381 推荐指数:

查看详情

常见算法面试之样本不均衡解决办法、交叉熵以及HMM、MEMM vs CRF

---恢复内容开始--- 1、样本类别不均衡解决办法 把数据进行采用的过程中通过相似性同时生成并插样“少数类别数据”,叫做SMOTE算法 对数据先进行聚类,再将大的簇进行随机欠采样或者小的簇进行数据生成 把监督学习变成无监督学习,舍弃掉标签把问题转化为一个无监督问题 ...

Tue Jul 16 22:52:00 CST 2019 0 510
如何解决样本不均衡问题

解决样本不均衡的问题很多,主流的几个如下: 1.样本的过采样和欠采样。 2..使用多个分类器进行分类。 3.将二分类问题转换成其他问题。 4.改变正负类别样本在模型中的权重。 一、样本的过采样和欠采样。 1.过采样:将稀有类别的样本进行复制,通过增加此稀有类样本的数量来平衡 ...

Wed Apr 04 04:58:00 CST 2018 0 6712
关于样本不均衡问题

原文地址:一只鸟的天空,http://blog.csdn.net/heyongluoyao8/article/details/49408131 在分类中如何处理训练集中不平衡问题   在很多机器学习任务中,训练集中可能会存在某个或某些类别下的样本数远大于另一些类别下的样本数目。即类别 ...

Mon Oct 11 09:18:00 CST 2021 0 150
样本不均衡问题

  one-stage的检测精度比不上two-stage,一个主要原因是训练过程样本不均衡造成。样本不均衡主要包括两方面,一是正负样本不均衡;二是难易样本不均衡。目前主要的解决方法包括OHEM,S-OHEM,Focal Loss,A-fast-RCNN,GHM(梯度均衡化)。 1. ...

Sun Nov 15 00:20:00 CST 2020 0 1818
深度学习样本不均衡问题解决

深度学习样本不均衡问题解决 在深度学习中,样本不均衡是指不同类别的数据量差别较大,利用不均衡样本训练出来的模型泛化能力差并且容易发生过拟合。 对不平衡样本 ...

Tue Mar 12 23:45:00 CST 2019 0 1881
样本不均衡对模型的影响

在做项目的时候,发现在训练集中,正负样本比例比例在1:7左右,虽然相差不多(但在实际获取的样本比例大概在1:2000左右),所以有必要探讨一下在样本不均衡的情况下,这些训练数据会对模型产生的影响。 在实际的模型选取中,采用了SVM和textCNN这两种模型对文本进行分类,下面分别看一下这两种 ...

Sun Mar 10 18:59:00 CST 2019 1 3822
处理样本不均衡数据

处理样本不均衡数据一般可以有以下方法: 1、人为将样本变为均衡数据。 上采样:重复采样样本量少的部分,以数据量多的一方的样本数量为标准,把样本数量较少的类的样本数量生成和样本数量多的一方相同。 下采样:减少采样样本量多的部分,以数据量少的一方的样本数量为标准。 2、调节模型参数 ...

Tue Jan 08 05:52:00 CST 2019 1 1557
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM