流式(streaming)和批量( batch):流式数据,实际上更准确的说法应该是unbounded data(processing),也就是无边界的连续的数据的处理;对应的批量计算,更准确的说法是bounded data(processing),亦即有明确边界的数据的处理。 近年 ...
简介 Structured Streaming is a scalable and fault tolerant stream processing engine built on the Spark SQL engine. You can express your streaming computation the same way you would express a batch compu ...
2018-08-12 16:37 0 1059 推荐指数:
流式(streaming)和批量( batch):流式数据,实际上更准确的说法应该是unbounded data(processing),也就是无边界的连续的数据的处理;对应的批量计算,更准确的说法是bounded data(processing),亦即有明确边界的数据的处理。 近年 ...
一.概述 Structured Streaming是一个可扩展、容错的流处理引擎,建立在Spark SQL引擎之上。开发者可以用离线批处理数据相同的表示来表示流计算的逻辑,并且保持其逻辑的一致性(流批一体)。Spark SQL引擎会处理好增量连续运行,并随着流式数据的接收持续更新最终结果。开发者 ...
1. 流处理的场景 我们在定义流处理时,会认为它处理的是对无止境的数据集的增量处理。不过对于这个定义来说,很难去与一些实际场景关联起来。在我们讨论流处理的优点与缺点时,先介绍一下流处理的常用场景。 ...
5. 实战Structured Streaming 5.1. Static版本 先读一份static 数据: val static = spark.read.json("s3://xxx/data/activity-data/") static.printSchema root ...
Streaming APIs Structured Streaming Basics ...
简介 Spark Streaming Spark Streaming是spark最初的流处理框架,使用了微批的形式来进行流处理。 提供了基于RDDs的Dstream API,每个时间间隔内的数据为一个RDD,源源不断对RDD进行处理来实现流计算 Structured Streaming ...
简介 Spark Streaming Spark Streaming是spark最初的流处理框架,使用了微批的形式来进行流处理。 提供了基于RDDs的Dstream API,每个时间间隔内的数据为一个RDD,源源不断对RDD进行处理来实现流计算。 Structured ...
Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架。这篇是介绍Spark Structured Streaming的基本开发方法。以Spark 自带的example进行测试和介绍,其为 ...