原文:SVM(支持向量机)之Hinge Loss解释

Hinge Loss解释 SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法。这里换一种角度来思考,在机器学习领域,一般的做法是经验风险最小化 ERM ,即构建假设函数为输入输出间的映射,然后采用损失函数来衡量模型的优劣。求得使损失最小化的模型即为最优的假设函数,采用不同的损失函数也会得到不同的机器学习算法,比如这里的主题 SVM ...

2018-08-07 12:23 0 16952 推荐指数:

查看详情

支持向量Hinge Loss 解释

Hinge Loss 解释 SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法。这里换一种角度来思考,在机器学习领域,一般的做法是经验风险最小化 ERM ,即构建假设函数为输入输出间的映射,然后采用损失函数来衡量模型的优劣。求得使 ...

Mon May 30 00:20:00 CST 2016 0 6824
SVM支持向量

1.什么是SVM 通过跟高斯“核”的结合,支持向量可以表达出非常复杂的分类界线,从而达成很好的的分类效果。“核”事实上就是一种特殊的函数,最典型的特征就是可以将低维的空间映射到高维的空间。 ​ 我们如何在二维平面划分出一个圆形的分类界线?在二维平面可能会很困难,但是通过“核”可以将二维 ...

Mon Aug 06 20:26:00 CST 2018 0 1282
支持向量SVM

断断续续看了好多天,赶紧补上坑。 感谢july的 http://blog.csdn.net/v_july_v/article/details/7624837/ 以及CSDN上淘的比较正规的SMO C++ 模板代码。~LINK~ 1995年提出的支持向量SVM)模型,是浅层学习中较新 ...

Sat Feb 14 19:51:00 CST 2015 0 4776
SVM支持向量

,RBF). 1.SVM支持向量的核函数 在SVM算法中,训练模型的过程实际上是对每个数据点对于 ...

Tue May 21 17:28:00 CST 2019 2 357
SVM 支持向量

支持向量就是使用了核函数的软间隔线性分类法,SVM可用于分类、回归和异常值检测(聚类)任务。“”在机器学习领域通常是指算法,支持向量是指能够影响决策的变量。 示意图如下(绿线为分类平面,红色和蓝色的点为支持向量): SVM原理 由逻辑回归引入[1] 逻辑回归是从特征中学 ...

Mon Jul 03 05:00:00 CST 2017 8 1631
SVM的损失函数(Hinge Loss)

习而言,这涉及到调整参数,比如需要调节权重矩阵W或偏置向量B,以提高分类的精度。 Hinge Los ...

Fri Jan 10 18:51:00 CST 2020 0 5184
支持向量SVM

关于 SVM 的博客目录链接,其中前1,2 两篇为约束优化的基础,3,4,5 三篇主要是 SVM 的建模与求解, 6 是从经验风险最小化的方式去考虑 SVM。 1. 约束优化方法之拉格朗日乘子法与KKT条件拉 2. 格朗日对偶 3. 支持向量SVM 4. SVM 核方法 ...

Tue Aug 09 02:30:00 CST 2016 0 1666
支持向量SVM)算法

支持向量(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器 ...

Wed Jul 16 23:05:00 CST 2014 2 98871
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM