为了在数据集上训练不同的模型并且选择性能最佳的模型,有时候虽然仍有改进的余地,因为我们不会肯定地说这个特定模型最合适解决手头的问题。因此,我们的目标是以任何可能的方式改进模型,影响这些模型性能的一个重要因素是它们的超参数,一旦我们为这些超参数找到合适的值,模型的性能就会显著提高。在本文中,将了 ...
我们在搜索超参数的时候,如果超参数个数较少 三四个或者更少 ,那么我们可以采用网格搜素,一种穷尽式的搜索方法。 但是当超参数个数比较多的时候,我们仍然采用网格搜索,那么搜索所需时间将会指数级上升。 比如我们有四个超参数,每个范围都是 , ,那么我们所需的搜索次数是 。 如果再增加一个超参数,那么所需的搜索次数是 ,搜索时间指数级上升。 所以很多很多个超参数的情况,假如我们仍然采用网格搜索,那么 g ...
2018-08-06 16:26 0 2327 推荐指数:
为了在数据集上训练不同的模型并且选择性能最佳的模型,有时候虽然仍有改进的余地,因为我们不会肯定地说这个特定模型最合适解决手头的问题。因此,我们的目标是以任何可能的方式改进模型,影响这些模型性能的一个重要因素是它们的超参数,一旦我们为这些超参数找到合适的值,模型的性能就会显著提高。在本文中,将了 ...
首先说交叉验证。 交叉验证(Cross validation)是一种评估统计分析、机器学习算法对独立于训练数据的数据集的泛化能力(generalize), 能够避免过拟合问题。 交叉验证一般要尽量满足 ...
基本使用 参数不冲突 参数不冲突时,直接用一个字典传递参数和要对应的候选值给GridSearchCV即可 我这里的参数冲突指的是类似下面这种情况:① 参数取值受限:参数a='a'时,参数b只能取'b',参数a='A'时,参数b能取'b'或'B'② 参数互斥:参数 a 或 b 二者只能选 ...
机器学习中超参数搜索的常用方法为 Grid Search,然而如果参数一多则容易碰到维数诅咒的问题,即参数之间的组合呈指数增长。如果有 \(m\) 个参数,每个有 \(n\) 个取值,则时间复杂度为 \(\Theta(n^m)\)。 Bengio 等人在 《Random Search ...
GridSearchCV可以保证在指定的参数范围内找到精度最高的参数,但是这也是网格搜索的缺陷所在,它要求遍历所有可能参数的组合,在面对大数据集和多参数的情况下,非常耗时。这也是我通常不会使用GridSearchCV的原因,一般会采用后一种RandomizedSearchCV随机参数搜索的方法 ...
在日常模型训练过程中,模型有多种选择,模型的参数同样也有多种选择,如何根据同一批数据选出最适合的模型和参数呢? 一般情况下,模型还比较好选择,是选用机器学习中分类模型例如 LR、SVM或XGBoost等,还是使用深度学习模型CNN、LSTM等。但是参数的选择就让人很头疼,每个模型都有一堆参数 ...
首先说交叉验证。交叉验证(Cross validation)是一种评估统计分析、机器学习算法对独立于训练数据的数据集的泛化能力(generalize), 能够避免过拟合问题。交叉验证一般要尽量满足:1 ...
1.简单网格搜索法 Lasso算法中不同的参数调整次数 ############################# 使用网格搜索优化模型参数 ####################################### #导入套索回归模型 from ...