原文:交叉熵损失函数和均方误差损失函数

交叉熵 分类问题中,预测结果是 或可以转化成 输入样本属于n个不同分类的对应概率。比如对于一个 分类问题,期望输出应该为 g , , , ,实际输出为 g . , . , . , ,计算g 与g 之间的差异所使用的方法,就是损失函数,分类问题中常用损失函数是交叉熵。 交叉熵 cross entropy 描述的是两个概率分布之间的距离,距离越小表示这两个概率越相近,越大表示两个概率差异越大。对于两个 ...

2018-04-19 20:31 0 1102 推荐指数:

查看详情

损失函数——均方误差交叉

1.MSE(均方误差) MSE是指真实值与预测值(估计值)差平方的期望,计算公式如下: MSE = 1/m (Σ(ym-y'm)2),所得结果越大,表明预测效果越差,即y和y'相差越大 2.Cross Entropy Loss(交叉) 在理解交叉之前 ...

Mon Jan 27 23:04:00 CST 2020 1 1175
损失函数(均方误差交叉

记录线性回归问题中常用的均方误差损失函数和分类问题中常用到的交叉损失函数 均方误差损失函数   首 ...

Mon Feb 22 07:32:00 CST 2021 0 517
均方误差交叉损失函数比较

一.前言 在做神经网络的训练学习过程中,一开始,经常是喜欢用二次代价函数来做损失函数,因为比较通俗易懂,后面在大部分的项目实践中却很少用到二次代价函数作为损失函数,而是用交叉作为损失函数。为什么?一直在思考这个问题,这两者有什么区别,那个更好?下面通过数学的角度来解释下 ...

Sun Sep 16 03:13:00 CST 2018 0 4629
交叉损失函数

交叉损失函数的概念和理解 觉得有用的话,欢迎一起讨论相互学习~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定义 ...

Sat Aug 26 23:15:00 CST 2017 2 8431
损失函数交叉

损失函数交叉 交叉用于比较两个不同概率模型之间的距离。即先把模型转换成这个数值,然后通过数值去定量的比较两个模型之间的差异。 信息量 信息量用来衡量事件的不确定性,即该事件从不确定转为确定时的难度有多大。 定义信息量的函数为: \[f(x):=\text{信息量 ...

Tue Aug 03 05:26:00 CST 2021 0 114
交叉损失函数

交叉损失函数 的本质是香浓信息量\(\log(\frac{1}{p})\)的期望 既然的本质是香浓信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...

Fri Apr 28 23:39:00 CST 2017 1 6494
交叉损失函数

1. Cross entropy 交叉损失函数用于二分类损失函数的计算,其公式为: 其中y为真值,y'为估计值.当真值y为1时, 函数图形: 可见此时y'越接近1损失函数的值越小,越接近0损失函数的值越大. 当真值y为0时, 函数图形: 可见此时y'越接近0损失 ...

Mon Jul 29 01:26:00 CST 2019 0 5788
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM