本文主要参考来源:图像处理其实很简单 线性滤波和卷积的关系:线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素 ...
git:https: github.com linyi Computer Vision ...
2018-07-31 14:32 0 905 推荐指数:
本文主要参考来源:图像处理其实很简单 线性滤波和卷积的关系:线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素 ...
卷积的目的是为了从输入中提取有用的特征。在图像处理中,有很多滤波器可以供我们选择。每一种滤波器帮助我们提取不同的特征。比如水平/垂直/对角线边缘等等。在CNN中,通过卷积提取不同的特征,滤波器的权重在训练期间自动学习。然后将所有提取到的特征“组合”以作出决定。 卷积的优势在于,权重共享和平 ...
一、原理简介 边缘检测原理 - Sobel, Laplace, Canny算子 X方向Sobel算子 -1 -2 -1 ...
一、滤波器实现 我们实现这样一个基于拉普拉斯算子的滤波器核心,并使用它进行滤波,这可以做到锐化图像的效果 ...
关于高斯核函数可以参见阮一峰老师的日志:高斯模糊的算法 如何使用高斯核进行高斯模糊可以参见我的另一篇日志:opencv构建自定义卷积 作者: Elliott Zheng 出处: http://www.cnblogs.com/elliottzheng/p ...
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; //Robert算子int Demo_Robert(){ char win1 ...
线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值 ...
以一张图片作为开始吧: 这里的输入数据是大小为(8×8)的彩色图片,其中每一个都称之为一个feature map,这里共有3个。所以如果是灰度图,则只有一个feature map。 进行卷积操作时,需要指定卷积核的大小,图中卷积核的大小为3,多出来的一维3不需要在代码中指定,它会 ...