原文:逻辑回归和sigmoid函数分类

逻辑回归和sigmoid函数分类:容易欠拟合,分类精度不高,计算代价小,易于理解和实现 sigmoid函数与阶跃函数的区别在于:阶跃函数从 到 的跳跃在sigmoid函数中是一个逐渐的变化,而不是突变。 logistic 回归分类器:在每个特征上乘以一个回归系数,然后将所有的结果值相加,将这个总和代入到sigmoid函数中,得到一个在 之间的数值,大于 . 分为 类,小于 . 分为 类。所以,逻辑 ...

2018-07-31 14:01 0 1138 推荐指数:

查看详情

逻辑回归为什么用sigmoid函数

Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。 因此,使用logistic函数(或称作sigmoid函数)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率。 ...

Fri Nov 09 00:04:00 CST 2018 0 1255
《机器学习(周志华)》笔记--线性模型(3)--逻辑回归思想、概率计算、sigmoid 函数逻辑回归的损失函数计算

四、逻辑回归   逻辑回归是属于机器学习里面的监督学习,它是以回归的思想来解决分类问题的一种非常经典的二分类分类器。由于其训练后的参数有较强的可解释性,在诸多领域中,逻辑回归通常用作baseline模型,以方便后期更好的挖掘业务相关信息或提升模型性能。 1、逻辑回归思想   当一看到“回归 ...

Sat Feb 01 18:40:00 CST 2020 0 751
逻辑回归——多类别分类

分类问题 将邮件分为不同类别/标签:工作(y=1),朋友(y=2),家庭(y=3),爱好(y=4) 天气分类:晴天(y=1),多云天(y=2),下雨天(y=3),下雪天(y=4) 医学图示(Medical diagrams):没生病(y=1),感冒(y=2),流感(y ...

Sat Oct 27 04:16:00 CST 2018 0 4632
逻辑回归分类算法

逻辑回归由于其简单、高效、可解释性强的特点,在实际用途中十分的广泛:从购物预测到用户营销响应,从流失分析到信用评价,都能看到其活跃的身影。可以说逻辑回归占据了分类算法中非常重要的地位。 逻辑回归:logistic regression,LR。模型公式是Logistic函数 ...

Sun Oct 27 00:25:00 CST 2019 0 362
逻辑回归分类算法)

1.什么是逻辑回归 在前面讲述的回归模型中,处理的因变量都是数值型区间变量,建立的模型描述是因变量的期望与自变量之间的线性关系。比如常见的线性回归模型:                  而在采用回归模型分析实际问题中,所研究的变量往往不全是区间变量而是顺序变量或属性变量 ...

Sun Sep 16 06:23:00 CST 2018 1 13099
分类逻辑回归

使用R语言做多分类逻辑回归。 任务是 有250个样本,给定三个特征,已经人为分类完成共5组,建立模型来给新数据分类, 先是使用了多元线性回归,三个自变量都比较显著,R2也有90多,实际测了下分类效果还可以。 注意:使用多元线性回归的四个前提条件: 线性、独立、正态、齐性。(1)自变量 ...

Thu Jul 18 23:29:00 CST 2019 0 1911
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM