转载: (1) https://zhuanlan.zhihu.com/p/51200626 (2) 菊安酱的机器学习第三期 (3) 代码来自:https://github.co ...
调用自己写的朴素贝叶斯函数正确率是 . ,调用sklearn中的BernoulliNB函数,正确率是 . 调用sklearn中的BernoulliNB函数的代码如下: 结果截屏: 优化:加入主成分分析方法,进行降维操作,代码如下: 结果截屏: 待修改中 参考链接 https: blog.csdn.net wds sdo article details ...
2018-07-28 17:00 0 1662 推荐指数:
转载: (1) https://zhuanlan.zhihu.com/p/51200626 (2) 菊安酱的机器学习第三期 (3) 代码来自:https://github.co ...
注:本人纯粹为了练手熟悉各个方法的用法 使用高斯朴素贝叶斯对鸢尾花数据进行分类 代码: 图片显示: 正确率: ...
先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,cool,high,TRUE,判断一下会不会去打球。 table ...
1.算法思想——基于概率的预测 贝叶斯决策论是概率框架下实施决策的基本方法。对分类任务来说,在所有相关概率都已知的情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的标记类别。 2. 理论基础 2.1 贝叶斯定理 这个定理解决了现实生活中经常遇到的问题:已知某条件概率,如何得到两个时间 ...
一、概率基础 概率定义:概率定义为一件事情发生的可能性,例如,随机抛硬币,正面朝上的概率。 联合概率:包含多个条件,且所有条 ...
1.公式 上式中左边D是需要预测的测试数据属性,h是需要预测的类;右边式子分子是属性的条件概率和类别的先验概率,可以从统计训练数据中得到,分母对于所有实例都一样,可以不考虑,所有只需 ,返回最大概率的那个类别。但是如果测试数据中没有那个属性,整个预测概率会是0;此外,此式针对离散型属性进行 ...
写在前面的话: 我现在大四,毕业设计是做一个基于大数据的用户画像研究分析。所以开始学习数据挖掘的相关技术。这是我学习的一个新技术领域,学习难度比我以往学过的所有技术都难。虽然现在在一家公司实习,但是工作还是挺忙的,经常要加班,无论工作多忙,还是决定要写一个专栏,这个专栏就写一些数据挖掘算法 ...
朴素贝叶斯和情感分类 分类问题在人类和机器智能中广泛应用:邮件分类、作业打分等。这篇博客介绍了朴素贝叶斯方法及其在文本分类方面的应用。其中文本分类的例子采用情感分析,就是从文本中进行情感抽取,并判断作者对特定事物的态度是积极还是消极,例如影评和书评的分析。情感分析中最简单的任务是二分类任务,文字 ...