生成式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于: 对于输入x,类别标签y: 生成式模型估计它们的联合概率分布P(x,y) 判别式模型估计条件概率分布P(y|x) 生成式模型可以根据贝叶斯公式 ...
目录 一 简介 二 对比 三 二者所包含的算法 . 生成式模型 . 判别式模型 判别式模型 vs. 生成式模型 简介 生成式模型 generadtive model 会对的联合分布进行建模,然后通过贝叶斯公式求得条件概率 在x发生的条件下y发生的概率 , 最后选择使得取得最大的。 判别式模型 discriminative model 则会对进行建模。 对比 下面简单比较下生成式模型的和判别式模型的 ...
2018-07-27 17:28 1 3866 推荐指数:
生成式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于: 对于输入x,类别标签y: 生成式模型估计它们的联合概率分布P(x,y) 判别式模型估计条件概率分布P(y|x) 生成式模型可以根据贝叶斯公式 ...
产生式模型(Generative Model)与判别式模型(Discrimitive Model)是分类器常遇到的概念,它们的区别在于: 对于输入x,类别标签y:产生式模型估计它们的联合概率分布P(x,y)判别式模型估计条件概率分布P(y|x)产生式模型可以根据贝叶斯公式得到判别式模型,但反过 ...
生成式模型 P(X,Y)对联合概率进行建模,从统计的角度表示数据的分布情况,刻画数据是如何生成的,收敛速度快。 • 1. 判别式分析 • 2. 朴素贝叶斯Native Bayes • 3. 混合高斯型Gaussians • 4. K近邻KNN • 5. 隐马尔科夫模型HMM • 6. 贝叶斯网络 ...
生成式模型 P(X,Y)对联合概率进行建模,从统计的角度表示数据的分布情况,刻画数据是如何生成的,收敛速度快。• 1. 判别式分析• 2. 朴素贝叶斯Native Bayes• 3. 混合高斯型Gaussians• 4. K近邻KNN• 5. 隐马尔科夫模型HMM• 6. 贝叶斯网络• 7. ...
有监督学习回归模型中,我们利用训练集直接对条件概率p(y|x;θ)建模,例如logistic回归就利用hθ(x) = g(θTx)对p(y|x;θ)建模(其中g(z)是sigmoid函数)。假设现在有一个分类问题,要根据一些动物的特征来区分大象(y = 1)和狗(y = 0)。给定这样的一种 ...
1. 简介 生成式模型(generative model)会对\(x\)和\(y\)的联合分布\(p(x,y)\)进行建模,然后通过贝叶斯公式来求得\(p(y|x)\), 最后选取使得\(p(y|x)\)最大的\(y_i\). 具体地, \(y_{*}=arg \max_{y_i}p(y_i ...
判别式模型和生成式模型主要区别是他们的构造方法不一样 判别式模型概念:直接基于条件概率来构造P(y|x),不需要求联合概率,属于此类型的算法有逻辑回归、决策树、KMM、K_meas、SVM 生成式模型概念:基于贝叶斯公式来构造的,需要求联合概率,典型的生成式模型有贝叶斯 ...
判别式模型(Discriminative Model)是直接对条件概率p(y|x;θ)建模。常见的判别式模型有 线性回归模型、线性判别分析、支持向量机SVM、神经网络等。 生成式模型(Generative Model)则会对x和y的联合分布p(x,y)建模,然后通过贝叶斯公式来求得p(yi|x ...