转自:https://www.cnblogs.com/xiachongkun/p/7767976.html,感谢分享 大名鼎鼎的蒙特卡洛方法(MC),源自于一个赌城的名字,作为一种计算方法,应用领域 ...
强化学习大致上可分为两类,一类是Markov Decision Learning,另一类是与之相对的Model Free Learning 分为这两类是站在问题描述的角度上考虑的。同样在解决方案上存在着两种方法对应着这两类问题描述,即Dynamic Programming DP 和Stochastic Method,其中DP方法可以分为Policy Iteration与Value Iteratio ...
2018-07-27 11:15 0 1468 推荐指数:
转自:https://www.cnblogs.com/xiachongkun/p/7767976.html,感谢分享 大名鼎鼎的蒙特卡洛方法(MC),源自于一个赌城的名字,作为一种计算方法,应用领域 ...
Meta-RL——Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji ...
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv: Learning, (2019) Abstract 深度RL算法需要大量经验才能学习单个任务。原则上,元强化学习(meta-RL)算法使智能体能够从少量经验中学习新技能,但一些主要挑战阻碍了它们的实用性 ...
RL算法已在一系列具有挑战性的决策和控制任务中得到证明。但是,这些方法通常面临两个主要挑战:极高的样本 ...
强化学习读书笔记 - 11 - off-policy的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 ...
强化学习读书笔记 - 09 - on-policy预测的近似方法 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 强化学习读书笔记 ...
前几天面试的时候被问到RL一些基础算法的区别,回来抽空做了一些整理方便加深理解。 On policy与off policy 为了解决强化学习中探索与利用的平衡问题,可以采用两个策略训练模型,一个策略为行为策略,用于保持探索性,提供多样化的数据,不断优化另一个策略(目标策略 ...
强化学习读书笔记 - 10 - on-policy控制的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 ...