关于交叉熵,信息熵等推导,已经有很多博客详细讲解了,这里就不再赘述了。本文要理清的是一个很初级的问题:二分类交叉熵和多分类交叉熵有没有统一的形式? 我们常见的二分类交叉熵形式如下: 而多分类的交叉熵为: 绝大多数教程,都是先以二分类作为特例,讲解交叉熵,然后再推到多分类交叉熵 ...
多分类问题的交叉熵 在多分类问题中,损失函数 loss function 为交叉熵 cross entropy 损失函数。对于样本点 x,y 来说,y是真实的标签,在多分类问题中,其取值只可能为标签集合labels. 我们假设有K个标签值,且第i个样本预测为第k个标签值的概率为 p i,k , 即 p i,k operatorname Pr t i,k , 一共有N个样本,则该数据集的损失函数为 ...
2018-07-27 10:34 0 8169 推荐指数:
关于交叉熵,信息熵等推导,已经有很多博客详细讲解了,这里就不再赘述了。本文要理清的是一个很初级的问题:二分类交叉熵和多分类交叉熵有没有统一的形式? 我们常见的二分类交叉熵形式如下: 而多分类的交叉熵为: 绝大多数教程,都是先以二分类作为特例,讲解交叉熵,然后再推到多分类交叉熵 ...
二分类问题的交叉熵 在二分类问题中,损失函数(loss function)为交叉熵(cross entropy)损失函数。对于样本点(x,y)来说,y是真实的标签,在二分类问题中,其取值只可能为集合{0, 1}. 我们假设某个样本点的真实标签为yt, 该样本点取yt=1的概率为yp ...
命名空间:tf.nn 函数 作用 说明 sigmoid_cross_entropy_with_logits 计算 给定 logits 的S函数 交叉熵。 测量每个类别独立且不相互排斥的离散分类任务中的概率 ...
为什么交叉熵损失更适合分类问题 作者:飞鱼Talk 链接:https://zhuanlan.zhihu.com/p/35709485 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 Cross Entropy Error Function(交叉熵损失函数 ...
关于categorical cross entropy 和 binary cross entropy的比较,差异一般体现在不同的分类(二分类、多分类等)任务目标,可以参考文章keras中两种交叉熵损失函数的探讨,其结合keras的API讨论了两者的计算原理和应用原理。 本文主要是介绍TF中的接口 ...
这篇写的比较详细: from: https://zhuanlan.zhihu.com/p/35709485 这篇文章中,讨论的Cross Entropy损失函数常用于分类问题中,但是为什么它会在分类问题中这么有效呢?我们先从一个简单的分类例子来入手。 1. 图像分类任务 我们希望根据图片 ...
sparsecategoricalcrossentropy,和,SparseCategoricalCrossentropy,用法,区别 这两个函数的功能都是将数字编码转化成one-hot编码格式,然后对one-hot编码格式的数据(真实标签值)与预测出的标签值使用交叉熵损失函数。 先看一下官网 ...
多分类问题:有N个类别C1,C2,...,Cn,多分类学习的基本思路是“拆解法”,即将多分类任务拆分为若干个而分类任务求解,最经典的拆分策略是:“一对一”,“一对多”,“多对多” (1)一对一 给定数据集D={(x1,y1),(x2,y2),...,(xn,yn)},yi€{c1,c2 ...