机器学习是时下流行AI技术中一个很重要的方向,无论是有监督学习还是无监督学习都使用各种“度量”来得到不同样本数据的差异度或者不同样本数据的相似度。良好的“度量”可以显著提高算法的分类或预测的准确率,本文中将介绍机器学习中各种“度量”,“度量”主要由两种,分别为距离、相似度和相关系数 ...
一 你知道聚类中度量距离的方法有哪些吗 欧式距离 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。即两点之间直线距离,公式比较简单就不写了 应用场景:适用于求解两点之间直线的距离,适用于各个向量标准统一的情况 曼哈顿距离 Manhattan Distance 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,实际驾驶距离就是这个 曼 ...
2018-07-27 10:56 0 5049 推荐指数:
机器学习是时下流行AI技术中一个很重要的方向,无论是有监督学习还是无监督学习都使用各种“度量”来得到不同样本数据的差异度或者不同样本数据的相似度。良好的“度量”可以显著提高算法的分类或预测的准确率,本文中将介绍机器学习中各种“度量”,“度量”主要由两种,分别为距离、相似度和相关系数 ...
机器学习是时下流行AI技术中一个很重要的方向,无论是有监督学习还是无监督学习都使用各种“度量”来得到不同样本数据的差异度或者不同样本数据的相似度。良好的“度量”可以显著提高算法的分类或预测的准确率,本文中将介绍机器学习中各种“度量”,“度量”主要由两种,分别为距离、相似度和相关系数 ...
距离会递减, 直到不满足迭代的条件便跳出循环 比如有10个样本点 我先设x1为z1,, ...
机制:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息进 ...
于处理静态数据的分类问题。 K-Means K-Means算法是一种简单的迭代性聚类算法,采用距离 ...
机器学习算法 原理、实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法、距离度量谈到KD树、SIFT+BBF算法,对内容格式与公式进行了重新整理。同时,文章中会有一些对知识点的个人理解和归纳补充,不代表原文章作者的意图 ...
机器学习是时下流行AI技术中一个很重要的方向,无论是有监督学习还是无监督学习都使用各种“度量”来得到不同样本数据的差异度或者不同样本数据的相似度。良好的“度量”可以显著提高算法的分类或预测的准确率,本文中将介绍机器学习中各种“度量”,“度量”主要由两种,分别为距离、相似度和相关系数 ...
1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。 (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离 ...