浅谈微积分以及泰勒展开 前言 这年头不会微积分干什么都不行啊 一.微积分 微积分其实就只有两种运算,一种是求导(微分),另一种是求积分。并且其为互逆运算 导数 导数的定义 导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念 ...
我们学习泰勒展开,本质上就是为了在某个点附近,用多项式函数取近似其他函数。可能有些童鞋就要问了,既然有一个函数了,为什么还需要用多项式函数取进行近似,理由就是多项式函数具有非常多优良的性质。 比如说,多项式函数既好计算,也好求导,还好积分,等等一系列的优良性质。 好,本质已经说完了,下面给出P x 在x 处的泰勒展开表达式,然后再进行仔细分析。 上面的文字表述用下面的slides总结: 可以推出c ...
2018-07-26 19:44 0 1235 推荐指数:
浅谈微积分以及泰勒展开 前言 这年头不会微积分干什么都不行啊 一.微积分 微积分其实就只有两种运算,一种是求导(微分),另一种是求积分。并且其为互逆运算 导数 导数的定义 导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念 ...
...
求导/泰勒展开 前言:求导是为泰勒展开铺路的。。 求导 \(f'(x)\)为\(f(x)\)的导数,即\(f(x)\)在\(x\)上的变化率 \(\begin{aligned} f'(x)=\lim_{\Delta x\rightarrow 0} \frac{f(x+\Delta x)-f ...
一阶泰勒公式是什么意思这里的不是都展到了二阶吗?为什么说是一阶?几阶是怎么看的? 回答: f'(xo)是准确值,f''(ξ)那一项是一阶泰勒的余项。所以说,还是展开到了一阶。 泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次 ...
该如何分析这道题呢? 结论:仅有f` 题干:有f和f`` 联想:泰勒展开Lagrange形式、绝对值不等式 了解一下泰勒公式 x和x0如何取值? 展开点:对于本题,一眼看出任意x,即取x 被展开点:本题难点,需要学习 错误思路: 显然界大了,精读不够,无法满足题目条件 ...
泰勒展开[1] 在实际应用中对于具有复杂形式的函数我们常常希望用较为简单的函数形式表示他,而多项式就是这种简单的形式。比如对于指数函数、三角函数,我们可以使用多项式来逼近。 为了逼近(或者说是仿造)目标函数曲线f(x),首先选择一个切入点(x0,f(f0)),然后让此处的增减性相同,即一阶导数 ...
泰勒展开式核心思想是仿照 当我们想要仿造一个东西的时候,即先保证大体上相似,再保证局部相似,再保证细节相似,再保证更细微的地方相似……不断地细化下去,无穷次细化以后,仿造的东西将无限接近真品。真假难辨。 由来 一位物理学家,把这则生活经验应用到他自己的研究中,则会出现下列场景: 一辆 ...
转载的原文:https://www.zhihu.com/question/25627482 而且评论处也是大神层出不穷,可去原文处阅读 干湿就不管了,直接上原文的干货: ...