原文:机器学习算法及实战——朴素贝叶斯代码实现

朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。朴素贝叶斯原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤。 .算法思想 基于概率的预测 逻辑回归通过拟合曲线 或者学习超平面 实现分类,决策树通过寻找最佳划分特征进而学习样本路径实现分类,支持向量机通过寻找分类超平面进而最大化类别间隔实现分类。相比之下,朴素贝叶斯独辟蹊径,通过考虑特征概率来预测分类。 举个可能不太恰 ...

2018-07-26 15:39 0 1871 推荐指数:

查看详情

机器学习--朴素算法原理、方法及代码实现

一、朴素算法原理   分类算法以样本可能属于某类的概率来作为分类依据,朴素分类算法分类算法中最简单的一种,朴素的意思是条件概率独立性。 条件概率的三个重要公式:   (1)概率乘法公式:               P(AB)= P(B) P(A|B) = P ...

Mon Jan 20 01:32:00 CST 2020 0 2021
机器学习实战朴素

一,引言   前两章的KNN分类算法和决策树分类算法最终都是预测出实例的确定的分类结果,但是,有时候分类器会产生错误结果;本章要学的朴素分类算法则是给出一个最优的猜测结果,同时给出猜测的概率估计值。 1 准备知识:条件概率公式 相信学过概率论的同学对于概率论绝对不会陌生,如果一时觉得 ...

Sat May 13 05:09:00 CST 2017 2 11888
机器学习回顾篇(5):朴素算法

注:本系列所有博客将持续更新并发布在github上,您可以通过github下载本系列所有文章笔记文件 1 引言 说到朴素算法,很自然地就会想到概率公式,这是我们在高中的时候就学过的内容,没错,这也正是朴素算法的核心,今天我们也从概率公式开始,全面撸一撸朴素算法 ...

Thu Sep 12 04:53:00 CST 2019 0 459
机器学习朴素算法

声明:本篇博文是学习机器学习实战》一书的方式路程,系原创,若转载请标明来源。 1 贝叶斯定理的引入 概率论中的经典条件概率公式: 公式的理解为,P(X ,Y)= P(Y,X)<=> P(X | Y)P(Y)= P(Y | X)P (X),即 X 和 Y 同时发生的概率与 Y ...

Sat Nov 04 23:20:00 CST 2017 1 5511
Spark机器学习(4):朴素算法

1. 贝叶斯定理 条件概率公式: 这个公式非常简单,就是计算在B发生的情况下,A发生的概率。但是很多时候,我们很容易知道P(A|B),需要计算的是P(B|A),这时就要用到贝叶斯定理: 2. 朴素分类 朴素分类的推导过程就不详述了,其流程可以简单的用一张图来表示 ...

Fri Jun 23 22:16:00 CST 2017 2 1724
Python机器学习笔记:朴素算法

  朴素是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。对于大多数的分类算法,在所有的机器学习分类算法中,朴素和其他绝大多数的分类算法都不同。比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数 ...

Sat May 18 23:47:00 CST 2019 1 2122
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM