转自:http://blog.csdn.net/ariessurfer/article/details/41310525 Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素之间关系的一种多 变量分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中 ...
logistic回归是一种广义线性回归 generalized linear model ,又叫对数几率回归 从后文中便可此名由来 ,因此与多重线性回归分析有很多相同之处。这是一个分类模型而不是一个回归模型. 它们的模型形式基本上相同,都具有 w x b,其中w和b是待求参数,其区别在于他们的 因变量不同,多重线性回归直接将w x b作为因变量,即y w x b,而logistic回归则通过函数 ...
2018-07-24 15:21 0 981 推荐指数:
转自:http://blog.csdn.net/ariessurfer/article/details/41310525 Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素之间关系的一种多 变量分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中 ...
公号:码农充电站pro 主页:https://codeshellme.github.io 上一篇文章介绍了线性回归模型,它用于处理回归问题。 这次来介绍一下 Logistic 回归,中文音译为逻辑回归,它是一个非线性模型,是由线性回归改进而来(所以逻辑回归的名字中带有“回归”二字 ...
1.什么是logistic回归? logistic回归虽然说是回归,但确是为了解决分类问题,是二分类任务的首选方法,简单来说,输出结果不是0就是1 举个简单的例子: 癌症检测:这种算法输入病理图片并且应该辨别患者是患有癌症(1)或没有癌症(0) 2.logistic回归和线性回归的关系 ...
(整理自AndrewNG的课件,转载请注明。整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 虽然叫做“回归”,但是这个算法是用来解决分类问题的。回归与分类的区别在于:回归所预测的目标量的取值是连续的(例如房屋的价格);而分类 ...
原文见 http://blog.csdn.net/acdreamers/article/details/27365941 Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素之间关系的一种多 变量分析方法。通常的问题是,研究某些因素条件下某个结果是否发生 ...
1. logistic回归的基本思想 logistic回归是一种分类方法,用于两分类问题。其基本思想为: a. 寻找合适的假设函数,即分类函数,用以预测输入数据的判断结果; b. 构造代价函数,即损失函数,用以表示预测的输出结果与训练数据的实际类别之间的偏差; c. ...
Logistic回归 Logistic回归的一般过程 (1)收集数据:采用任意方法收集数据 (2)准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式最佳 (3)分析数据:采用任意方法对数据进行分析 (4)训练算法:大部分 ...
Part I: 线性回归 线性回归很常见,给你一堆点,作出一条直线,尽可能去拟合这些点。对于多维的数据,设特征为xi,设函数$h(\theta )=\theta+\theta_{1}x_{1}+\theta_{2}x_{2}+....\theta_{n}x_{n}$为拟合的线性函数 ...