元算法是对其他算法进行组合的一种方式。单层决策树实际上是一个单节点的决策树。adaboost优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整缺点:对离群点敏感适用数据类型:数值型和标称 ...
SVM有很多种实现,但是本章只关注其中最流行的一种实现,即序列最小化 SMO 算法在此之后,我们将介绍如何使用一种称为核函数的方式将SVM扩展到更多的数据集上基于最大间隔的分割数据优点:泛化错误率低,计算开销不大,结果易解释缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题适用数据类型:数值型和标称型数据寻找最大间隔:分割超平面的形式可以写成W T x b,要计算点A到分割 ...
2018-07-23 11:44 0 755 推荐指数:
元算法是对其他算法进行组合的一种方式。单层决策树实际上是一个单节点的决策树。adaboost优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整缺点:对离群点敏感适用数据类型:数值型和标称 ...
假设现在有一些点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归。利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,依次进行分类。Lo ...
我们经常使用决策树处理分类问题,近年来的调查表明决策树也是经常使用的数据挖掘算法K-NN可以完成多分类任务,但是它最大的缺点是无法给出数据的内在含义,决策树的主要优势在于数据形式非常容易理解决策树的优 ...
用Java实现串口通信(windows系统下),须要用到sun提供的串口包 javacomm20-win32.zip。当中要用到三个文件,配置例如以下: 1.comm.jar放置到 JAV ...
SVM Python实现 Python实现SVM的理论知识 SVM原始最优化问题: \[min_{w,b,\xi}{1\over{2}}{||w||}^2 + C\sum_{i=1}^m\xi^{(i)} \] \[s.t. \ \ y^{(i)}(w^{T}x ...
# -*- coding: utf-8 -*- from sklearn.svm import SVC import numpy as np print(X.shape,Y.shape) X = np.random.random((10,5)) #训练数据 Y = np.array ...
1、简述 本文基于Python的sklearn库,在pycharm下实现SVM算法。 skleran中集成了许多算法,其导入包的方式如下所示: 逻辑回归:from sklearn.linear_model import LogisticRegression 朴素贝叶斯:from ...
隔了好久木有更新了,因为发现自己numpy的很多操作都忘记了,加上最近有点忙.。。 接着上次 我们得到的迭代函数为 首先j != yi j = yi import numpy as np def svm_loss_naive(W, X, y, reg ...