约数个数定理: 约数个数=\(\displaystyle \prod^{k}_{i= 1} (a_i + 1)\) 证明: 由唯一分解定理\(n = p_1 ^{a_1} p_2 ^{a_2}p_3 ^{a_3}...p_k ^{a_k}\)可得: \(n\)的约数一定是 \(p_1^{x ...
据说这俩是小学奥数内容 完了我菜成一团没上过小学 本文只研究正整数 A 的约数个数和约数和。首先对 A 分解质因数 A prod i n p i a i p i是质数 约数个数定理 先看结论 num sum i n a i 考虑对于 A 的任意一个约数 a ,都显然存在唯一的数列 a 使 a prod i n p i a i leq a i leq a i 由唯一分解定理得,每一个符合条件的数列 ...
2018-07-15 15:57 0 1302 推荐指数:
约数个数定理: 约数个数=\(\displaystyle \prod^{k}_{i= 1} (a_i + 1)\) 证明: 由唯一分解定理\(n = p_1 ^{a_1} p_2 ^{a_2}p_3 ^{a_3}...p_k ^{a_k}\)可得: \(n\)的约数一定是 \(p_1^{x ...
1、如果我们要求一个数的所有因数的个数会怎么去求呢? 首先想到最简单的方法就是暴力求解就可以。当然数据小、或者测试数据少就很简单就可以过了。 2、如果求一个区间内的数的所有因数的个数呢?或者求一个区间内的数的因数最大的数以及最大的因数(正因数)的个数? 这样的话,数据大一些,组数多一些 ...
最近做了一个要求求一个数约数个数的题,后来发现居然有这方面的定理,也就是约数个数定理,所以赶紧记下来。大概是: 对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak, 则n的正约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1 ...
洛谷P3327 [SDOI2015]约数个数和 洛谷P4619 [SDOI2018]旧试题 要用到这个性质,而且网上几乎没有能看的证明,所以特别提出来整理一下。 Original(2020/02) 二维 \[d(AB) = \sum_{x|A} \sum_{y|B ...
筛约数个数和 理论基础: 1、对n质因数分解,n=p1^k1 * p2^k2 * p3^k3 …… 则n的约数个数为(k1+1)*(k2+1)*(k3+1)…… 2、线性筛素数时,用i和素数pj来筛掉 i*pj, 其中pj一定是i*pj的最小素因子 如果i是pj的倍数,pj也是i ...
算法提高 约数个数 时间限制:1.0s 内存限制:512.0MB 输入一个正整数N,输出其约数的个数。 样例输入 12 样例输出 6 样例说明 ...
约数,外文名:Divisor,别名:因数 简介: 约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。 1.试除法求约数 ...
原题链接 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N、M\),求\(\sum_{i=1}^{N}\sum_{j=1}^{m}d(ij)\) 输入输出格式 输入格式: 输入文件包含多组测试数据。第一行,一个整数T,表示测试数据的组数。接下来的T行,每行 ...