原文:坐标下降 vs 梯度下降

梯度下降与坐标下降优化方法 梯度下降法: 在每次迭代更新时选择负梯度方向 最速下降的方向 进行一次更新.不断迭代直至到达我们的目标或者满意为止. 坐标下降法: 坐标下降法属于一种非梯度优化的方法,它在每步迭代中沿一个坐标的方向进行搜索,通过循环使用不同的坐标方法来达到目标函数的局部极小值。求导时只对一个维度 坐标轴方向 进行求导,而固定其它维度,这样每次只优化一个分量. 相比梯度下降法而言,坐标下 ...

2018-07-14 17:27 0 3579 推荐指数:

查看详情

机器学习笔记——简述坐标下降

一 综述 坐标下降法属于一种非梯度优化的方法,它在每步迭代中沿一个坐标的方向进行搜索,通过循环使用不同的坐标方法来达到目标函数的局部极小值。 二 算法过程 假设目标函数是求解$f(x)$的极小值,其中$x=(x_1,x_2,\ldots,x_n)$是一个n维的向量,我们从初始点$x ...

Wed Jul 04 07:08:00 CST 2018 0 4461
坐标下降法(coordinate descent method)求解LASSO的推导

坐标下降法(coordinate descent method)求解LASSO推导 LASSO在尖点是singular的,因此传统的梯度下降法、牛顿法等无法使用。常用的求解算法有最小角回归法、coordinate descent method等。 由于coordinate descent ...

Thu May 16 19:21:00 CST 2019 0 1526
机器学习笔记-坐标下降

坐标下降法(Coordinate Descent)是一个简单但却高效的非梯度优化算法。与梯度优化算法沿着 ...

Wed May 27 21:44:00 CST 2020 0 800
梯度下降与随机梯度下降

梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可。在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只剩下参数部分了,这时可以把参数看做是自变量,则目标函数变成参数的函数了。梯度下降每次都是更新每个参数 ...

Sat Apr 04 00:35:00 CST 2015 2 18684
【stanford】梯度梯度下降,随机梯度下降

一、梯度gradient http://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BA%A6 在标量场f中的一点处存在一个矢量G,该矢量方向为f在该点处变化率最大的方向,其模也等于这个最大变化率的数值,则矢量G称为标量场f的梯度。 在向量微积分中,标量场的梯度 ...

Fri Dec 14 06:35:00 CST 2012 1 6572
梯度下降法和随机梯度下降

1. 梯度   在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...

Sat Jun 01 23:33:00 CST 2019 0 2193
梯度下降法和随机梯度下降

(1)梯度下降法 在迭代问题中,每一次更新w的值,更新的增量为ηv,其中η表示的是步长,v表示的是方向 要寻找目标函数曲线的波谷,采用贪心法:想象一个小人站在半山腰,他朝哪个方向跨一步,可以使他距离谷底更近(位置更低),就朝这个方向前进。这个方向可以通过微分得到。选择足够小的一段曲线 ...

Fri Dec 16 01:50:00 CST 2016 0 34664
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM