线性回归算法,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 1. 梯度下降法 线性回归可以使用最小二乘法,但是速度比较慢,因此一般使用梯度下降法(Gradient Descent),梯度下降法又分为批量梯度下降法(Batch Gradient ...
构建Maven项目,托管jar包 数据格式 .fp nid, .nsr id, .gf id, .hydm, .djzclx dm, .kydjrq, .xgrq, .je, .se, .jshj, .kpyf, .kprq, .zfbz, .date key, .hwmc, .ggxh, .dw, .sl, .dj, .je je , .se , .spbm, .label fpid : : . ...
2018-07-13 14:17 0 848 推荐指数:
线性回归算法,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。 1. 梯度下降法 线性回归可以使用最小二乘法,但是速度比较慢,因此一般使用梯度下降法(Gradient Descent),梯度下降法又分为批量梯度下降法(Batch Gradient ...
一.算法简介 线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为一元线性回归,大于一个自变量情况的叫做多元线性回归 ...
一.什么是多元线性回归 在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。 二.多元线性回归 ...
回归是指利用样本(已知数据),产生拟合方程,从而对(未知数据)进行预测。 用途:预测、判别合理性。 困难:①选定变量(多元);②避免多重共线性;③观察拟合方程,避免过度拟合;④检验模型的合理性。 因变量与自变量的关系:①相关关系(非确定性关系,比如物理与化学成绩相关性 ...
简单的线性回归算法举例 引子 小学的时候老师出过的一道题,方程 y = w0 + w1x ,已知两组数据,求解w0和w1 x = 1 ,y = 2 x = 2 ,y = 3 两点确定一条直线,此时可以准确求得w0 和 w1 但是如果给了3组数据,可不可以准确求得w0 和 w1 ...
1.本节重点知识点用自己的话总结出来,可以配上图片,以及说明该知识点的重要性 (1)本节课的内容思维导图 监督学习:可以用于映射出该实例的类别。 无监督学习:我们只知道特征,并不知道答案,不同的实例具有一定的相似性,把那些相似的聚集在一起。 (2)回归与分类的区别 回归与分类 ...
>>提君博客原创 http://www.cnblogs.com/tijun/ << 假定线性拟合方程: 提君博客原创 变量 Xi 是 i 个变量或者说属性 参数 ai 是模型训练的目的就是计算出这些参数的值。 线性回归分析的整个过程可以简单 ...
代码实现: 结果: 总结:各回归算法在相同的测试数据中表现差距很多,且算法内的配置参数调整对自身算法的效果影响也是巨大的, 因此合理挑选合适的算法和配置合适的配置参数是使用算法的关键! ...