SSD模型配置(训练)与运行 参考博文: 1. * ssd模型配置及运行demo 2. * SSD: Signle Shot Detector 用于自然场景文字检测 3. SSD的配置安装与测试 4. * SSD: Single Shot MultiBox Detector检测单张图片 ...
SSD模型训练起来较为简单,所以最近用的也比较多 现在做一个完整的SSD模型解析,包括训练过程中遇到的各种坑的解决办法 先放一个被用烂了的图 模型说明 图片通过vgg 的conv layer得到一个feature map 对feature map 进行卷积,使用 的卷积核,再使用 的卷积核,使用multi task方法 在使用 卷积核之后,分别经过两个不同的 卷积核 获得result sigmoi ...
2018-07-13 10:51 0 4215 推荐指数:
SSD模型配置(训练)与运行 参考博文: 1. * ssd模型配置及运行demo 2. * SSD: Signle Shot Detector 用于自然场景文字检测 3. SSD的配置安装与测试 4. * SSD: Single Shot MultiBox Detector检测单张图片 ...
DetectionOutput算子 本文基本结构:首先介绍detection output 这一层的基本理解,之后给出ssd所有代码的详细注释,最后给出caffe中该层各个参数的定义和默认值。 detection out layer是ssd网络最后一层,用于选框整合预、预选框偏移以及得分三项 ...
PriorBox算子 ssd网络一大特点是,为了提高检测准确率,在不同尺度的特征图上进行预测,这种预测就需要prior box layer。 prior box 是干嘛的呢?其实非常类似于Faster R-CNN中的Anchors,就是候选框,这种候选框的选取不需要像R-CNN那样通过复杂 ...
问题描述在windows平台上,本地训练SSD_512得到了对应的权值参数文件,加载模型进行前向测试的时候,发现调用caffe.io.Transformer中的resize处理函数速度太慢,打算用opencv的resize做替换,因此更改了输入图片到模型中的预处理过程,使用 ...
内容引用其它文章:https://my.oschina.net/u/876354/blog/1927351 目标检测是AI的一项重要应用,通过目标检测模型能在图像中把人、动物、汽车、飞机等目标物体检测出来,甚至还能将物体的轮廓描绘出来,就像下面这张图。 在动手 ...
YOLO、SSD、FPN、Mask-RCNN检测模型对比 一.YOLO(you only look once) YOLO 属于回归系列的目标检测方法,与滑窗和后续区域划分的检测方法不同,他把检测任务当做一个regression问题来处理,使用一个神经网络,直接从一整张图像来预测出 ...
参考网址:github:https://github.com/naisy/realtime_object_detection2018.10.16ssd物体检测总结:切记粗略地看一遍备注就开始训练模型出现的错误:1、用branch1.5,tensorflow-gpu==1.8训练的模型在GT730 ...
最近工作的项目使用了TensorFlow中的目标检测技术,通过训练自己的样本集得到模型来识别游戏中的物体,在这里总结下。 本文介绍在Windows系统下,使用TensorFlow的object detection API来训练自己的数据集,所用的模型为ssd ...