KNN项目实战——改进约会网站的配对效果 1、项目背景: 海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类: 不喜欢的人 魅力一般的人 极具魅力的人 ...
今天读 机器学习实战 读到了使用k 临近算法改进约会网站的配对效果,道理我都懂,但是看到代码里面的数据样本集 datingTestSet .txt 有点懵,这个样本集在哪里,只给了我一个文件名,没有任何内容啊。 上网百度了这个文件名,发现很多博主的博客里可以下载,我很好奇,同样是读 机器学习实战 ,他们是从哪里下载的数据样本集呢 就重新读了这本书。终于在 关于本书 最后的 作者在线里面 找到了网址 ...
2018-07-11 17:17 1 2125 推荐指数:
KNN项目实战——改进约会网站的配对效果 1、项目背景: 海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类: 不喜欢的人 魅力一般的人 极具魅力的人 ...
1、kNN 算法 算法说明: set<X1,X2……Xn> 为已知类别数据集,预测 点Xt 的类别: (1)计算中的set中每一个点与Xt的距离 (2)按距离增序排列 (3)选择距离最小的前k个点 (4)确定前k个点所在的类别的出现频率 (5)返回频率最高的类别作为测试 ...
机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组 ...
1.KNN原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中最相似数据(最近邻)的分类标签。一般来说,只选择样本 ...
一. KNN原理: 1. 有监督的学习 根据已知事例及其类标,对新的实例按照离他最近的K的邻居中出现频率最高的类别进行分类。伪代码如下: 1)计算已知类别数据集中的点与当前点之间的距离 2)按照距离从小到大排序 3)选取与当前点距离最小的k个点 4)确定这k个点所在类别 ...
目的:改进约会网站配对效果 数据样本 下载地址 (百度网盘) 读取txt数据的代码 这段代码没有什么好解释的,注意一点 listFromLine[0:3] 表示的是0,1,2下标的值(不包含3) matplotlib matplotlib可以认为是python下 ...
为什么电脑排版效果和手机排版效果不一样~ 目前只学习了python的基础语法,有些东西理解的不透彻,希望能一边看《机器学习实战》,一边加深对python的理解,所以写的内容很浅显,也许还会有一部分错误,希望得到大家的指正。在看到书上第一个KNN算法,实现简单的电影分类的时候,就遇到了很多问 ...
数据读取 运行结果: K:候选对象个数,近邻数(如找3个和自己最近的样本) 先使用可容纳旅客的数量(accommodat ...