[牛客网]A Number Theoretical Problem 题目链接:https://ac.nowcoder.com/acm/problem/207599 这貌似是一道求逆元的模板题,但是。。。 逆元是什么啊!!!扩展欧几里得是什么啊!!! 于是我今天花了一下去 ...
问题描述: 已知a b互质,求ax by 的一组解 扩展欧几里得算法: 假如b ,由于gcd a,b ,因此a x 假如b ,不妨假设a kb r,并且我们已经求出了bx ry 的一组解 x ,y bx a kb y ax by bx ay kby b x ky ay ax by x y y x ky 那么 x ,y 就是ax by 的一组解 不断迭代即可 include lt iostream ...
2018-07-10 19:36 0 3014 推荐指数:
[牛客网]A Number Theoretical Problem 题目链接:https://ac.nowcoder.com/acm/problem/207599 这貌似是一道求逆元的模板题,但是。。。 逆元是什么啊!!!扩展欧几里得是什么啊!!! 于是我今天花了一下去 ...
gcd(欧几里得算法辗转相除法): gcd ( a , b )= d ; 即 d = gcd ( a , b ) = gcd ( b , a mod b );以此式进行递归即可。 之前一直愚蠢地以为辗转相除法输进去时 a 要大于 b ,现在发现事实上如果 a 小于 b,那第一次就会先交 ...
1、在RSA算法生成私钥的过程中涉及到了扩展欧几里得算法(简称exgcd),用来求解模的逆元。 2、首先引入逆元的概念: 逆元是模运算中的一个概念,我们通常说 A 是 B 模 C 的逆元,实际上是指 A * B = 1 mod C,也就是说 A 与 B 的乘积模 C 的余数为 1。可表示 ...
扩展欧几里得算法 已知整数a、b,扩展欧几里得算法可以在求得a、b的最大公约数的同时,能找到整数x、y,使它们满足贝祖等式:ax+by=gcd(a,b) 为什么一定存在贝祖等式呢,裴蜀定理如下: 设存在x,y使ax+by=d,d是ax+by取值中的最小正整数,d≠1。再设am+bn=e,则e ...
扩展欧几里得算法: a x + b ...
我们首先了解一下欧几里得算法 这个我们在小学应该就接触过 利用辗转相除法求最大公约数 用python代码表示一下: 接着我们要了解加法逆元与乘法逆元 加法逆元就是: 乘法逆元: 接下来再是利用扩展欧几里得算法求乘法 ...
一。欧几里得算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。 递归实现: 优化 迭代实现 ...
困在这个算法快一个礼拜了,在经过不断的百度查找博客学习中终于弄懂了这个算法,并找到一个写的非常好的大牛的博客,故特意保留下来以便以后复习 本博客转载自:http://blog.csdn.net/zhjchengfeng5/article/details/7786595 扩展欧几里德算法 ...